【BZOJ 3156】防御准备
【链接】 链接
【题意】
在这里输入题意
【题解】
把a倒过来
设f[i]表示在i放一个防御塔的最小花费;
我们如果从j转移过来
就表示j+1..i-1这一段放人偶。
s[i] = 1 + 2 + ... + i;
则
$f[i] = fj + (s[i-1]-s[j]) -(i-1-j)*j + a[i]$
做一下斜率优化就好。
因为我们第一段可能一开始没有放防御塔。
所以先假设在第n个位置放了一个防御塔。
再枚举最后一段没放防御塔的情况。
【错的次数】
在这里输入错的次数
【反思】
转移方程那里一开始写成s[i-1]-s[j]了。。。错误地认为是i+1..j这一段了。而实际上是i+1..j-1这一段。
【代码】
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e6;
int n,dl[N+10],h,t;
ll a[N+10],f[N+10],s[N+10];
double ju(int x,int y)
{
double fenzi = f[y]-s[y]+1LL*y*y+y-(f[x]-s[x]+1LL*x*x+x);
double fenmu = y-x;
return fenzi/fenmu;
}
int main()
{
//freopen("F:\\rush.txt","r",stdin);
scanf("%d",&n);
for (int i = n;i >= 1;i--) scanf("%lld",&a[i]);
for (int i = 1;i <= n;i++) s[i] = s[i-1] + i;
f[1] = a[1];
h = t = 1;
dl[1] = 1;
for (int i = 2;i <= n;i++)
{
while (h < t && ju(dl[h],dl[h+1]) < i) h++;
int j = dl[h];
f[i] = f[j] + (s[i-1]-s[j])-1LL*(i-1-j)*j + a[i];
while (h < t && ju(dl[t-1],dl[t]) > ju(dl[t],i)) t--;
dl[++t] = i;
}
ll ans = f[n];
for (int i = 1;i<=n-1;i++)
ans=min(ans,f[i]+s[n]-s[i]-1LL*(n-i)*i);
printf("%lld\n",ans);
return 0;
}
【BZOJ 3156】防御准备的更多相关文章
- BZOJ 3156: 防御准备 斜率优化DP
3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...
- bzoj 3156 防御准备(斜率DP)
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 837 Solved: 395[Submit][Status][Discuss] ...
- BZOJ 3156: 防御准备( dp + 斜率优化 )
dp(i)表示处理完[i,n]且i是放守卫塔的最小费用. dp(i) = min{dp(j) + (j-i)(j-i-1)/2}+costi(i<j≤N) 然后斜率优化 ------------ ...
- BZOJ 3156 防御准备
也是斜率优化....推下式子就好了. #include<iostream> #include<cstdio> #include<cstring> #include& ...
- bzoj 3156: 防御准备【斜率优化dp】
就是套路咯,设s[i]为1+2+...i 首先列出dp方程\( f[i]=min(f[j]+a[i]+(i-j)*i-(s[i]-s[j])) \) 然后推一推 \[ f[i]=f[j]+a[i]+( ...
- DP的优化总结
一.预备知识 \(tD/eD\) 问题:状态 t 维,决策 e 维.时间复杂度\(O(n^{e+t})\). 四边形不等式: 称代价函数 w 满足凸四边形不等式,当:\(w(a,c)+w(b,d)\l ...
- 【BZOJ】【3156】防御准备
DP/斜率优化 斜率优化的裸题…… sigh……又把$10^6$当成10W了……RE了N发 这题还是很水的 当然逆序也能做……不过还是整个反过来比较顺手 反转后的a[0]=反转前的a[n],以此类推直 ...
- 【BZOJ-3156】防御准备 DP + 斜率优化
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 951 Solved: 446[Submit][Status][Discuss] ...
- BZOJ3156: 防御准备
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 442 Solved: 210[Submit][Status] Descript ...
随机推荐
- 多行文本溢出显示...的方法(-webkit-line-clamp)
限制在一个块元素显示的文本的行数. -webkit-line-clamp 是一个 不规范的属性(unsupported WebKit property),它没有出现在 CSS 规范草案中. 为了实现该 ...
- shell项目-告警系统
告警系统 1. 告警系统需求分析 需求:使用shell定制各种个性化告警工具,但需要统一化管理.规范化管理. 思路:指定一个脚本包,包含主程序.子程序.配置文件.邮件引擎.输出日志等. 主程序:作为整 ...
- init进程
2.Linux下的三个特殊进程 Linux下有三个特殊的进程idle进程(PID=0),init进程(PID=1),和kthreadd(PID=2)idle进程由系统自动创建,运行在内核态idle进程 ...
- 初识Django框架——环境搭建前你需要了解的几点
Django是一个开放源代码的Web应用框架,由Python写成. 采用了MVC的框架模式,即模型M,视图V和控制器C. 它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是C ...
- P1145 约瑟夫
P1145 约瑟夫 题目描述 n个人站成一圈,从某个人开始数数,每次数到m的人就被杀掉,然后下一个人重新开始数,直到最后只剩一个人.现在有一圈人,k个好人站在一起,k个坏人站在一起.从第一个好人开始数 ...
- iOS开发--漫谈内存管理(一)
1.MRC与ARC 苹果提供两种内存管理机制:一种是MRC(manual reference count),即手动引用计数:还有一种是ARC(auto reference count).即自己主动引用 ...
- 当Java代码遇上抽象、重载加重写,一切都不美好了
当Java代码遇上抽象.重载加重写.一切都不美好了 前几天调程序遇上个奇怪的bug.一直没找到问题,今天最终发现问题所在了,不说了先上代码(下面代码是演示样例代码,经測试,Java不存在这问题,安卓存 ...
- eclipse- MAT安装及使用
1.安装eclipse mat插件 1)查看当前eclipse版本 进入eclipse目录:右击eclipse图标,看到安装目录/home/zhangshuli/adt-bundle-linux-x8 ...
- [NOI.AC#34]palinedrome 字符串hash+贪心
容易看出,只要从两边往中间扫描,碰到相等的就直接分割然后加入答案即可,判断相等用字符串hash #include<bits/stdc++.h> #define REP(i,a,b) for ...
- golang 逐行读取文件
package main import ( "bufio" "fmt" "io" "os" ) func main() ...