最大值最小,所以考虑二分

|Σaij-Σbij|<=mid,所以Σbij的上下界就是(Σaij-mid,Σaij+mid)

考虑建有上下界网络,连接(s,i,Σaik-mid,Σaik+mid),(j,t,Σakj-mid,Σakj+mid),(i,j,l,r),如果有可行流这个mid就合法

跑可行流即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=505;
int n,m,ll,rr,a[N][N],sh[N],sl[N],h[N],cnt,le[N],d[N],s,t;
struct qwe
{
int ne,to,va;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='0')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
memset(le,0,sizeof(le));
queue<int>q;
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int r=0;
while(bfs())
r+=dfs(s,1e9);
return r;
}
void wk(int u,int v,int l,int r)
{
d[u]-=l,d[v]+=l;
ins(u,v,r-l);
}
bool ok(int w)
{
memset(h,0,sizeof(h));
memset(d,0,sizeof(d));
cnt=1;
for(int i=1;i<=n;i++)
wk(n+m+1,i,sh[i]-w,sh[i]+w);
for(int i=1;i<=m;i++)
wk(i+n,n+m+2,sl[i]-w,sl[i]+w);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
wk(i,j+n,ll,rr);
wk(n+m+2,n+m+1,0,1e8);
s=0,t=n+m+3;
int sm=0;
for(int i=1;i<=n+m+2;i++)
{
if(d[i]>0)
ins(s,i,d[i]),sm+=d[i];
else
ins(i,t,-d[i]);
}
return dinic()==sm;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=read(),sh[i]+=a[i][j],sl[j]+=a[i][j];
ll=read(),rr=read();
int l=0,r=400000,ans=r;
while(l<=r)
{
int mid=(l+r)>>1;
if(ok(mid))
r=mid-1,ans=mid;
else
l=mid+1;
}
printf("%d\n",ans);
return 0;
}

bzoj 2406: 矩阵【二分+有源汇上下界可行流】的更多相关文章

  1. bzoj千题计划158:bzoj2406: 矩阵(有源汇上下界可行流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2406 设矩阵C=A-B 最小化 C 一行或一列和的最大值 整体考虑一行或者一列的和 二分最大值 这样 ...

  2. BZOJ 2406 矩阵(二分+有源汇上下界可行流)

    题意 题解 二分答案+可行流判断. 模板题. CODE #include <cstdio> #include <cstring> #include <algorithm& ...

  3. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

  4. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

  5. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  6. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  7. 算法复习——有源汇上下界可行流(bzoj2396)

    题目: Description We are supposed to make a budget proposal for this multi-site competition. The budge ...

  8. poj2396有源汇上下界可行流

    题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...

  9. bzoj 2406 矩阵 —— 有源汇上下界可行流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2406 这题,首先把题目那个式子的绝对值拆成两个限制,就成了网络流的上下界: 有上下界可行流原 ...

随机推荐

  1. ios6.0,程序为横屏,出现闪退

    本文转载至 http://blog.csdn.net/huanghuanghbc/article/details/10150355   ios6.0,程序为横屏,出现闪退 *** Terminatin ...

  2. 用Darwin开发RTSP级联服务器(拉模式转发)(附源码)

    源码下载地址:https://github.com/EasyDarwin orwww.easydarwin.org 在博客 在Darwin进行实时视频转发的两种模式 中,我们描述了流媒体服务器对源端音 ...

  3. MySql in子句 效率低下优化(亲测有效,从200秒变1秒)

    MySql in子句 效率低下优化 背景: 更新一张表中的某些记录值,更新条件来自另一张含有200多万记录的表,效率极其低下,耗时高达几分钟. update clear_res set candele ...

  4. 13.JavaScript 类

    JavaScript 类 JavaScript 是面向对象的语言,但 JavaScript 不使用类. 在 JavaScript 中,不会创建类,也不会通过类来创建对象(就像在其他面向对象的语言中那样 ...

  5. js的单线程与异步

    一. js 是单线程和异步 1. js 是单线程的,js 的宿主环境(浏览器)是多线程的,实现异步. 2.js是单线程语言,浏览器值分配给js一个主线程,用来执行任务(函数),但一次只能执行一个任务, ...

  6. CentOS软件管理之源代码以及RPM软件包管理

    在Linux系统下,对于软件包的管理有多种机制,有源代码方式.RPM软件包管理方式以及YUM软件管理方式,本篇随笔将详细讲解CentOS下源代码形式安装软件以及RPM软件包管理机制 一.源代码形式 首 ...

  7. js中的命名空间

    尽量不要使用全局变量,防止环境污染和命名冲突. 所以,将全局变量放在一个命名空间下,是一个好的解决方案. 静态命名空间 1. 直接赋值 这是最基本的方法,但是它很啰嗦,你得重复书写多次变量名.好处是它 ...

  8. Constructing Roads In JGShining's Kingdom

    点击打开题目链接 本题目是考察  最长递增子序列的  有n^2     n(logn)  n^2  会超时的 下面两个方法的代码  思路  可以百度LIS  LCS dp里面存子序列 n(logn) ...

  9. Numpy中的flatten是按照什么方式进行工作。

    a = [[[1,2],[3,4]],[[5,6],[7,8]]] a = np.ndarray(a) array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) type ...

  10. Asterisk 拨号方案中截取字符串

    在dialplan中要截取字符串可用如下几种方式: 1.转到agi中由php进行处理,这种方法比较简单,在这里不再缀述 2.在dialplan中利用内置的方法进行截取 如 [test] exten = ...