刷题总结——分糖(ssoj 容斥原理+逆元+快速幂+组合数求插板)
题目:
题目描述
有 N 个(相同的)糖果,M 个(不同的)小朋友。M 和 N 满足:1≤M≤N≤100000(105)。
要求:
1.每个小朋友都至少有一个糖果。
2.不存在正整数 X(X>=2),使得每个小朋友的糖果数都是 X 的倍数。
3.糖果不能剩余。
求分糖方法总数。答案模 1000000007(109+7)
输入格式
第一行为数据组数:T<=100000。
接下来 N 行,每行 2 个如上文所示的正整数 N,M。
输出格式
输出 T 行,每行一个整数,为答案。
注意取模!
样例数据 1
备注
【数据范围】
对于 30% 的数据:1<=M<=N<=20
对于 60% 的数据:1<=M<=N<=1000
对于 100% 的数据:1<=M<=N<=100000
题解:
一道题充分证明我在数论上是个sb
首先第一次学到用dfs来求充斥,涨姿势了····
然后就是用组合数来解决将x个糖分到y个小朋友手里的问题····相当于在x-1个空格中插入y-1个板子···转化成组合数···
最后一个问题就是组合数每次肯定只能通过预处理的阶乘相处来求··然而阶乘已经取模···相当于如何计算a/bmodp的问题····
不难想到a/b相当于a*1/b,而1/b%p就是b模p的逆元····且p为质数的情况下逆元直接等于b的p-2次方模p,用快速幂来求即可
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
using namespace std;
const int N=1e5+;
const int mod=1e9+;
vector<int>zhiyinzi[N];
long long jc[N],T,n,m,ans,niyuan[N];
bool notprime[N];
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar())
f=(f<<)+(f<<)+c-'';
return f;
}
inline long long ksm(long long a,long long b)
{
long long temp=;
while(b)
{
if(b%==) temp=(temp*a)%mod;
b/=;
a=(a*a)%mod;
}
return temp;
}
inline void pre()
{
for(int i=;i<=;i++)
{
if(!notprime[i])
{
zhiyinzi[i].push_back(i);
for(int j=;j*i<=;j++)
{
notprime[i*j]=true;
zhiyinzi[i*j].push_back(i);
}
}
}
jc[]=;
for(int i=;i<=;i++) jc[i]=(jc[i-]*i)%mod;
for(int i=;i<=;i++) niyuan[i]=ksm(jc[i],mod-);
}
inline int calc(int a,int b)
{
if(a<b) return ;
return ((long long)(jc[a-]*niyuan[b-])%mod*niyuan[a-b])%mod;
}
inline void dfs(int u,int tot,int f)
{
if(u==zhiyinzi[n].size())
{
ans=(ans+f*calc(n/tot,m))%mod;
return;
}
dfs(u+,tot*zhiyinzi[n][u],-f);
dfs(u+,tot,f);
}
int main()
{
//freopen("a.in","r",stdin);
pre();T=R();
while(T--) {
ans=;n=R(),m=R();
dfs(,,);
cout<<(((ans%mod)+mod)%mod)<<endl;
}
return ;
}
刷题总结——分糖(ssoj 容斥原理+逆元+快速幂+组合数求插板)的更多相关文章
- 2014 Super Training #7 F Power of Fibonacci --数学+逆元+快速幂
原题:ZOJ 3774 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3774 --------------------- ...
- 牛客网 牛客小白月赛1 I.あなたの蛙が帰っています-卡特兰数,组合数阶乘逆元快速幂
I.あなたの蛙が帰っています 链接:https://www.nowcoder.com/acm/contest/85/I来源:牛客网 这个题有点意思,是卡特兰数,自行百度就可以.卡特兰数用处 ...
- HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场
A Boring Question Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- Gym - 101775A Chat Group 组合数+逆元+快速幂
It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: ...
- ACM学习历程—HDU5490 Simple Matrix (数学 && 逆元 && 快速幂) (2015合肥网赛07)
Problem Description As we know, sequence in the form of an=a1+(n−1)d is called arithmetic progressio ...
- 牛客网 Wannafly挑战赛11 B.白兔的式子-组合数阶乘逆元快速幂
链接:https://www.nowcoder.com/acm/contest/73/B来源:牛客网 B.白兔的式子 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 262144K, ...
- 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)
题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...
随机推荐
- UVA 1616 Caravan Robbers 商队抢劫者(二分)
x越大越难满足条件,二分,每次贪心的选区间判断是否合法.此题精度要求很高需要用long double,结果要输出分数,那么就枚举一下分母,然后求出分子,在判断一下和原来的数的误差. #include& ...
- UVA 1152 4 Values Whose Sum is Zero 和为0的4个值 (中途相遇)
摘要:中途相遇.对比map,快排+二分查找,Hash效率. n是4000的级别,直接O(n^4)肯定超,所以中途相遇法,O(n^2)的时间枚举其中两个的和,O(n^2)的时间枚举其他两个的和的相反数, ...
- for...in、for...of、forEach()有什么区别
本文原链接:https://cloud.tencent.com/developer/article/1360074 for of 和 for in 循环 循环遍历数组的时候,你还在用 for 语句走天 ...
- Nuget使用备忘
菜单:工具-库程序包管理器-管理解决方案的NuGet程序包,搜索,下载,安装 或者 工具-库程序包管理器-程序包管理器控制台,输入PM命令,如: install-package log4net 如果不 ...
- C# Dictionary 的几种遍历方法,排序
Dictionary<string, int> list = new Dictionary<string, int>(); list.Add(); //3.0以上版本 fore ...
- 1_HDFS理论及安装部署
一.hadoop简介 1.hadoop的初衷是为了解决Nutch的海量数据爬取和存储的需要,HDFS来源于google的GFS,MapReduce来源于Google的MapReduce,HBase来源 ...
- C# 使用Epplus导出Excel [4]:合并指定行
C# 使用Epplus导出Excel [1]:导出固定列数据 C# 使用Epplus导出Excel [2]:导出动态列数据 C# 使用Epplus导出Excel [3]:合并列连续相同数据 C# 使用 ...
- H5 JS判断客户端是否是iOS或者Android手机移动端
<script type="text/javascript"> var u = navigator.userAgent; || u.indexOf(; //androi ...
- python-函数基础、函数参数
目录 函数的基础 什么是函数 为何用函数 如何调用函数 定义函数的三种形式 无参函数 有参函数 空函数 函数的返回值 什么是返回值 为什么要有返回值 函数的调用 函数参数的应用 形参和实参 位置参数 ...
- manjaro(arch)里的vbox 安装centos7后,centos无法联网的解决办法
第一步,在VirtualBox中设置网卡连接方式:点“设置”,在弹出的界面中点“网络”,最后选择“连接方式”为“桥接网卡”. 回到centOS中,进入终端,输入命令:ip addr,查看网络配置文件的 ...