传送门:http://www.lightoj.com/volume_showproblem.php?problem=1030

Discovering Gold

Time Limit: 2 second(s) Memory Limit: 32 MB

Program Description

You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.

Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expected number of gold you can collect using the given procedure.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.

Output

For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored.

Sample Input

3

1

101

2

10 3

3

3 6 9

Output for Sample Input

Case 1: 101.0000000000

Case 2: 13.000

Case 3: 15


解题心得:

  1. 考的就是一个期望dp ,求期望一个很重要的就是逆求期望,为啥是逆求呢,如果正求是在前面期望的基础之上求期望。期望的期望只是一种可能性,并不符合概率要求。这个可以参考贝叶斯公式的定义,里面说的很清楚。关于求期望,要从已知推到未知,就这个题来说,已知只能是必定到达最后一个格子。所以要从已知走向位置就是逆着求的。
  2. dp[i]代表的是扔到第i个格子期望得到多少的金子。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 110;
double dp[maxn];
int num[maxn],t,n;
int main()
{
scanf("%d",&t);
int T = 1;
while(t--)
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&num[i]);
dp[i] = num[i];
}
int count = 1;
for(int i=n-1;i>=1;i--)
{
if(count > 6)//在后面没有六个格子可能性就没有六种
count = 6;
for(int j=1;j<=count;j++)
dp[i] += (double)(dp[i+j]/count);
count++;
}
printf("Case %d: ",T++);
printf("%.7f\n",dp[1]);
}
}

LightOj:1030-Discovering Gold(期望dp模板)的更多相关文章

  1. LightOJ - 1030 Discovering Gold —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1030 1030 - Discovering Gold    PDF (English) Statistics For ...

  2. LightOJ 1030 - Discovering Gold - [概率DP]

    题目链接:https://cn.vjudge.net/problem/LightOJ-1030 You are in a cave, a long cave! The cave can be repr ...

  3. LightOj 1030 - Discovering Gold(dp+数学期望)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1030 题意:在一个1*n 的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得 ...

  4. LightOJ 1030 Discovering Gold(期望 概率)

    正推,到达i的概率为p[i],要注意除了1和n外,到达i的概率并不一定为1 概率表达式为p[i] += p[j] / min(n - j, 6) 从j带过来的期望为exp[i] += exp[j] / ...

  5. LightOJ 1030 Discovering Gold (概率/期望DP)

    题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...

  6. LightOJ 1030 Discovering Gold(期望)

    Description You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell o ...

  7. LightOJ 1030 Discovering Gold(概率DP)题解

    题意:1~n每格都有金子,每次掷骰子,掷到多少走几步,拿走那格的金子,问你金子的期望 思路:dp[i]表示从i走到n金子的期望,因为每次最多走1<=x<=6步,所以dp[i] = a[i] ...

  8. LightOJ 1030 Discovering Gold (期望)

    https://vjudge.net/problem/LightOJ-1030 题意: 在一个1×N的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得到该格子的金币. 现在从1格子开始,每次 ...

  9. LightOJ 1030 Discovering Gold 数学期望计算

    题目大意:给出长度为n的一条隧道,每个位置都有一定数量的财宝.给你一枚骰子,roll到几点就前进几步,如果即将到达的地方超过了这条隧道长度,就重新roll一次,走到n点结束.求这个过程能收获多少财宝. ...

  10. Light OJ 1030 - Discovering Gold(概率dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1030 题目大意:有一个很长的洞穴, 可以看做是1-n的格子.你的起始位置在1的 ...

随机推荐

  1. js和jq中常见的各种位置距离之offset()和position()的区别(二)

    offset()返回的是相对于当前文档的坐标,position()返回的是相对于其定位的祖辈元素的坐标. 使用position()方法时事实上是把该元素当绝对定位来处理,获取的是该元素相当于最近的一个 ...

  2. (转)nginx应用总结(2)--突破高并发的性能优化

    原文:http://www.cnblogs.com/kevingrace/p/6094007.html 在日常的运维工作中,经常会用到nginx服务,也时常会碰到nginx因高并发导致的性能瓶颈问题. ...

  3. 为什么数据库ID不能作为URL中的标识符

    最近公司在进行网站的SEO优化,将所有主要页面的URL统一更改为新的格式,其中重要的一项改变是将所有URL的标识符统一为ID,例如过去我们的一个用户的公共页面URL是这样的 https://www.e ...

  4. [转]Todd.log - a place to keep my thoughts on programming 分布式架构中的幂等性

    Todd.log - a place to keep my thoughts on programming 理解HTTP幂等性 基于HTTP协议的Web API是时下最为流行的一种分布式服务提供方式. ...

  5. 【持续更新】Spring相关

    什么是IoC 什么是AoP Bean的实例化方法--3种 Bean的作用域--常用2种 Bean的生命周期 Bean的装配方式 基于xml的2种装配方式 基于Annotaton的装配方式

  6. vue-cli3脚手架的配置以及使用

    Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统,提供: 通过 @vue/cli 搭建交互式的项目脚手架. 通过 @vue/cli + @vue/cli-service-global  ...

  7. ”position”之绝对定位深入理解

    要点: 1.绝对元素脱离文档流 它从文档流中脱离了出来,后面的元素会填充掉它原来的位置 2.绝对定位元素定位 以离他最近的.有定位的.祖先元素 为准 参照对象决定元素的位置 情况1 <div ( ...

  8. 简单案列完美搞定Mvc设计模式

    一个小列子搞定Mvc模式,包括数据库以及如何提高用户体验度 1.首先来web.xml配置servlet的访问路径: <?xml version="1.0" encoding= ...

  9. vijos 1320 清点人数

    背景 NK中学组织同学们去五云山寨参加社会实践活动,按惯例要乘坐火车去.由于NK中学的学生很多,在火车开之前必须清点好人数. 描述 初始时,火车上没有学生:当同学们开始上火车时,年级主任从第一节车厢出 ...

  10. IT的学习部落(持续更新)

    1.易百教程 - 专注于IT教程和实例     http://www.yiibai.com/ 2.站长特效 - js特效      http://www.zzjs.net/ 3.酷站-享受编程和技术所 ...