【bzoj1367】[Baltic2004]sequence 可并堆
题目描述

输入

输出
一个整数R
样例输入
7
9
4
8
20
14
15
18
样例输出
13
题解
可并堆,黄源河《左偏树的特点及其应用》Page 13例题原题
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1000010
using namespace std;
int a[N] , root[N] , l[N] , r[N] , d[N] , w[N] , tot , si[N] , lp[N] , rp[N];
int merge(int x , int y)
{
if(!x) return y;
if(!y) return x;
if(w[x] < w[y]) swap(x , y);
si[x] += si[y];
r[x] = merge(r[x] , y);
if(d[l[x]] < d[r[x]]) swap(l[x] , r[x]);
d[x] = d[r[x]] + 1;
return x;
}
int main()
{
int n , i , j , p = 0;
long long ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , a[i] -= i;
for(i = 1 ; i <= n ; i ++ )
{
root[++p] = ++tot , w[tot] = a[i] , si[tot] = 1 , lp[p] = rp[p] = i;
while(p > 1 && w[root[p]] < w[root[p - 1]])
{
p -- , root[p] = merge(root[p] , root[p + 1]) , rp[p] = rp[p + 1];
while(2 * si[root[p]] > rp[p] - lp[p] + 2) root[p] = merge(l[root[p]] , r[root[p]]);
}
}
for(i = 1 ; i <= p ; i ++ )
for(j = lp[i] ; j <= rp[i] ; j ++ )
ans += (long long)abs(w[root[i]] - a[j]);
printf("%lld\n" , ans);
return 0;
}
【bzoj1367】[Baltic2004]sequence 可并堆的更多相关文章
- BZOJ 1367: [Baltic2004]sequence [可并堆 中位数]
1367: [Baltic2004]sequence Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 1111 Solved: 439[Submit][ ...
- 【BZOJ-1367】sequence 可并堆+中位数
1367: [Baltic2004]sequence Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 932 Solved: 348[Submit][S ...
- BZOJ1367 [Baltic2004]sequence 堆 左偏树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1367 题意概括 Description Input Output 一个整数R 题解 http:// ...
- 可并堆试水--BZOJ1367: [Baltic2004]sequence
n<=1e6个数,把他们修改成递增序列需把每个数增加或减少的总量最小是多少? 方法一:可以证明最后修改的每个数一定是原序列中的数!于是$n^2$DP(逃) 方法二:把$A_i$改成$A_i-i$ ...
- BZOJ1367 [Baltic2004]sequence 【左偏树】
题目链接 BZOJ1367 题解 又是一道神题,, 我们考虑一些简单的情况: 我们先假设\(b_i\)单调不降,而不是递增 对于递增序列\(\{a_i\}\),显然答案\(\{b_i\}\)满足\(b ...
- BZOJ1367 [Baltic2004]sequence
现学的左偏树...这可是道可并堆的好题目. 首先我们考虑z不减的情况: 我们发现对于一个区间[l, r],里面是递增的,则对于此区间最优解为z[i] = t[i]: 如果里面是递减的,z[l] = z ...
- BZOJ 1367 [Baltic2004]sequence (可并堆)
题面:BZOJ传送门 题目大意:给你一个序列$a$,让你构造一个递增序列$b$,使得$\sum |a_{i}-b_{i}|$最小,$a_{i},b_{i}$均为整数 神仙题.. 我们先考虑b不递减的情 ...
- BZOJ1367: [Baltic2004]sequence(左偏树)
Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Output 13 解题思路: 有趣的数学题. 首先确定序 ...
- bzoj1367 [Baltic2004]sequence 左偏树+贪心
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1367 题解 先考虑条件为要求不下降序列(不是递增)的情况. 那么考虑一段数值相同的子段,这一段 ...
随机推荐
- Java的内存回收机制详解X
http://blog.csdn.net/yqlakers/article/details/70138786 1 垃圾回收的意义 在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前 ...
- 【BZOJ4458】GTY的OJ(树上超级钢琴)
点此看题面 大致题意: 给你一棵树,让你求出每一个节点向上的长度在\([l,r]\)范围内的路径权值和最大的\(m\)条路径的权值总和. 关于此题的数列版本 此题的数列版本,就是比较著名的[BZOJ2 ...
- flush caches
- java程序换图标
ImageIcon img = new ImageIcon("D:\\mahou-in-action\\ShiJuanFenXi\\src\\zoom-in.png"); inst ...
- axios使用思路总结
一.Axios是什么?用来发送请求的对象,类似之前的ajax 二.如何使用? 目前只说get和post的使用方式.一共有两种. 直接使用配置项的方式,发送请求: 2.使用别名来发送请求 参考: htt ...
- C的xml编程-libxml2
这里主要讲述libxml2在linux下的使用. (以下内容除了linux下的安装步骤是自己写的,其余均出自http://www.blogjava.net/wxb_nudt/archive/2007/ ...
- JS:字符串转成json数据,和json转成字符串方法 iframe获取父级传过来的数据
字符串转成json数据,和json转成字符串方法 //转为JSON adinfo=JSON.parse(adinfo) //转为字符串 adinfo=JSON.stringify(adinfo) 大概 ...
- 理解 Objective-c "属性"
理解 Objective-c "属性" @property 是OC中能够快速定义一个属性的关键字,如下我们定义一个属性. @property NSString *String; 这 ...
- A1002 A+B for Polynomials (25)(25 分)
1002 A+B for Polynomials (25)(25 分) This time, you are supposed to find A+B where A and B are two po ...
- A1065 A+B and C (64bit) (20)(20 分)
A1065 A+B and C (64bit) (20)(20 分) Given three integers A, B and C in [-2^63^, 2^63^], you are suppo ...