题目链接:http://poj.org/problem?

id=3335

Description

This year, ACM/ICPC World finals will be held in a hall in form of a simple polygon. The coaches and spectators are seated along the edges of the polygon. We want to place a rotating scoreboard somewhere in the hall such that a spectator sitting anywhere
on the boundary of the hall can view the scoreboard (i.e., his line of sight is not blocked by a wall). Note that if the line of sight of a spectator is tangent to the polygon boundary (either in a vertex or in an edge), he can still view the scoreboard. You
may view spectator's seats as points along the boundary of the simple polygon, and consider the scoreboard as a point as well. Your program is given the corners of the hall (the vertices of the polygon), and must check if there is a location for the scoreboard
(a point inside the polygon) such that the scoreboard can be viewed from any point on the edges of the polygon.

Input

The first number in the input line, T is the number of test cases. Each test case is specified on a single line of input in the form n x1 y1 x2 y2 ... xn yn where n (3
≤ n ≤ 100) is the number of vertices in the polygon, and the pair of integers xi yi sequence specify the vertices of the polygon sorted in order.

Output

The output contains T lines, each corresponding to an input test case in that order. The output line contains either YES or NO depending on whether the scoreboard can be placed inside the hall conforming to the problem conditions.

Sample Input

2
4 0 0 0 1 1 1 1 0
8 0 0 0 2 1 2 1 1 2 1 2 2 3 2 3 0

Sample Output

YES
NO

Source

PS:

顺时针给出点!

求是否有核!

逆时针给出仅仅要反一下输入就好了:http://blog.csdn.net/u012860063/article/details/41145157

代码例如以下:

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
#define eps 1e-8
const int MAXN=10017;
int n;
double r;
int cCnt,curCnt;//此时cCnt为终于分割得到的多边形的顶点数、暂存顶点个数
struct point
{
double x,y;
};
point points[MAXN],p[MAXN],q[MAXN];//读入的多边形的顶点(顺时针)、p为存放终于分割得到的多边形顶点的数组、暂存核的顶点 void getline(point x,point y,double &a,double &b,double &c) //两点x、y确定一条直线a、b、c为其系数
{
a = y.y - x.y;
b = x.x - y.x;
c = y.x * x.y - x.x * y.y;
}
void initial()
{
for(int i = 1; i <= n; i++)p[i] = points[i];
p[n+1] = p[1];
p[0] = p[n];
cCnt = n;//cCnt为终于分割得到的多边形的顶点数。将其初始化为多边形的顶点的个数
}
point intersect(point x,point y,double a,double b,double c) //求x、y形成的直线与已知直线a、b、c、的交点
{
double u = fabs(a * x.x + b * x.y + c);
double v = fabs(a * y.x + b * y.y + c);
point pt;
pt.x=(x.x * v + y.x * u) / (u + v);
pt.y=(x.y * v + y.y * u) / (u + v);
return pt;
}
void cut(double a,double b ,double c)
{
curCnt = 0;
int i;
for(i = 1; i <= cCnt; ++i)
{
if(a*p[i].x + b*p[i].y + c >= 0)q[++curCnt] = p[i];// c因为精度问题,可能会偏小。所以有些点本应在右側而没在。
//故应该接着推断
else
{
if(a*p[i-1].x + b*p[i-1].y + c > 0) //假设p[i-1]在直线的右側的话。
{
//则将p[i],p[i-1]形成的直线与已知直线的交点作为核的一个顶点(这种话,因为精度的问题,核的面积可能会有所降低)
q[++curCnt] = intersect(p[i],p[i-1],a,b,c);
}
if(a*p[i+1].x + b*p[i+1].y + c > 0) //原理同上
{
q[++curCnt] = intersect(p[i],p[i+1],a,b,c);
}
}
}
for(i = 1; i <= curCnt; ++i)p[i] = q[i];//将q中暂存的核的顶点转移到p中
p[curCnt+1] = q[1];
p[0] = p[curCnt];
cCnt = curCnt;
}
void solve()
{
//注意:默认点是顺时针,假设题目不是顺时针,规整化方向
initial();
for(int i = 1; i <= n; ++i)
{
double a,b,c;
getline(points[i],points[i+1],a,b,c);
cut(a,b,c);
}
/*
假设要向内推进r。用该部分取代上个函数
for(int i = 1; i <= n; ++i){
Point ta, tb, tt;
tt.x = points[i+1].y - points[i].y;
tt.y = points[i].x - points[i+1].x;
double k = r / sqrt(tt.x * tt.x + tt.y * tt.y);
tt.x = tt.x * k;
tt.y = tt.y * k;
ta.x = points[i].x + tt.x;
ta.y = points[i].y + tt.y;
tb.x = points[i+1].x + tt.x;
tb.y = points[i+1].y + tt.y;
double a,b,c;
getline(ta,tb,a,b,c);
cut(a,b,c);
}*/
/* //多边形核的面积
double area = 0;
for(int i = 1; i <= curCnt; ++i)
area += p[i].x * p[i + 1].y - p[i + 1].x * p[i].y;
area = fabs(area / 2.0);
*/
}
/*void GuiZhengHua(){
//规整化方向。逆时针变顺时针。顺时针变逆时针
for(int i = 1; i < (n+1)/2; i ++)
swap(points[i], points[n-i]);
}*/
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = 1; i <= n; i++)//逆时针反一下从n->1就好了
{
scanf("%lf%lf",&points[i].x,&points[i].y);
}
points[n+1] = points[1];
solve();
if(cCnt < 1)
printf("NO\n");//无核
else
printf("YES\n");//有核
}
return 0;
}

POJ 3335 Rotating Scoreboard(半平面交 多边形是否有核 模板)的更多相关文章

  1. POJ 3335 Rotating Scoreboard 半平面交求核

    LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...

  2. poj 3335 Rotating Scoreboard - 半平面交

    /* poj 3335 Rotating Scoreboard - 半平面交 点是顺时针给出的 */ #include <stdio.h> #include<math.h> c ...

  3. poj 3335 Rotating Scoreboard(半平面交)

    Rotating Scoreboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6420   Accepted: 25 ...

  4. poj 3335 Rotating Scoreboard (Half Plane Intersection)

    3335 -- Rotating Scoreboard 给出一个多边形,要求判断它的内核是否存在. 还是半平面交的题,在这道题中,公告板允许其所在位置与直线共线也算是可见,于是我们就可以将每一条直线微 ...

  5. POJ 3335 Rotating Scoreboard(半平面交求多边形核)

    题目链接 题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点. 思路 : 半平面交求多边形内核. 半平面交资料 关于求多边形内核的算法 什么是多边形的 ...

  6. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  7. POJ 1279 Art Gallery 半平面交/多边形求核

    http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...

  8. POJ 3335 Rotating Scoreboard(多边形的核)

    题目链接 我看的这里:http://www.cnblogs.com/ka200812/archive/2012/01/20/2328316.html 然后整理一下当做模版.0换成eps,会wa,应该要 ...

  9. poj 3335 Rotating Scoreboard

    http://poj.org/problem?id=3335 #include <cstdio> #include <cstring> #include <algorit ...

随机推荐

  1. CodeForces839D[莫比乌斯反演] Codeforces Round #428 (Div. 2)

    /*CodeForces839D[莫比乌斯反演]*/ #include <bits/stdc++.h> typedef long long LL; const LL MOD = 10000 ...

  2. 【bzoj3676】[Apio2014]回文串 回文自动机

    题目描述 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最大出现值. 输入 输入只有一行,为一个只包含小写字母( ...

  3. 刷题总结——拆网线(noip模拟 贪心)

    题目: 给定一颗树··在保证有k个点与其它点连接的情况下问最少保留多少条边···· 树的节点树n和k均小于100000: 题解: 很容易看出来我们要尽量保留那种一条边连两个节点的情况···· 然后考试 ...

  4. java面试题之java中用到的线程调度算法是什么

    抢占式.一个线程用完CPU之后,操作系统会根据线程优先级.线程饥饿情况等数据算出一个总的优先级并分配下一个时间片给某个线程执行. 操作系统中可能会出现某条线程常常获取到VPU控制权的情况,为了让某些优 ...

  5. 说说IO(一)- IO的分层

    IO性能对于一个系统的影响是至关重要的.一个系统经过多项优化以后,瓶颈往往落在数据库:而数据库经过多种优化以后,瓶颈最终会落到IO.而IO性能的发展,明显落后于CPU的发展.Memchached也好, ...

  6. ideaaaaaaaaa

    数据库proxy:可以用作自动化数据逆向SQL test4j/jtester:

  7. Zabbix实现短信报警设置(实战)

    配置环境: zabbix 2.2.15 1.配置示警媒介类型 此文件所在位置:/usr/lib/zabbix/alertscripts/ 必须拥有执行权限,并且改变所属用户和组 要修改此脚本的路径,需 ...

  8. <深入理解计算机系统> CSAPP Tiny web 服务器

    本文是我学习<深入理解计算机系统>中网络编程部分的学习笔记. 1. Web基础       web客户端和服务器之间的交互使用的是一个基于文本的应用级协议HTTP(超文本传输协议).一个w ...

  9. Bzoj2038 小Z的袜子(hose)

    Time Limit: 20000MS   Memory Limit: 265216KB   64bit IO Format: %lld & %llu Description 作为一个生活散漫 ...

  10. 【CF1016B】Segment Occurrences(模拟)

    题意:给定两个串s和t,多次询问s的一个区间[l ,r]中有多少个子串与t串相同 len<=1e3,q<=1e5 思路:前缀和 #include<cstdio> #includ ...