[ZJOI2011][bzoj2229] 最小割 [最小割树]
题面
思路
首先我们明确一点:这道题不是让你把$n^2$个最小割跑一遍【废话】
但是最小割过程是必要的,因为最小割并没有别的效率更高的算法(Stoer-Wagner之类的?)
那我们就要尽量找办法减少做最大流(求最小割)的次数
最小割树
就像最小生成树一样,最小割也有自己的生成树
我们新建立一个有n个点,没有边的无向图
我们在原无向图中任选两个点S,T,求出S-T最小割,那么可以在S-T中间加一条权值等于最小割值得无向边
然后,分别对S属于的点集合和T属于的点集合递归做上面的过程,直到当前处理的集合只剩下一个点了
现在,对于这棵新树(显然是一棵树,可以自己退一下为什么),有一个结论:
树上任意两个点在原图中的对应点之间的最小割值等于这两个点的树上路径中边权的最小值
证明?我也不知道啊!
但是这个算法的正确性是可以保证的(你也可以感性理解一下qwq)
做法
有了这个“大杀器”以后,这道题也就迎刃而解了~
这道题目的点数很小,因此我们只要把所有搞出来的最小割值依此更新点对
处理询问的时候就把所有的点对扫一遍输出就好了
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define inf 1e9
using namespace std;
inline int read(){
int re=0,flag=1;
scanf("%d",&re);return re;
char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int n,m,cnt,first[210],dep[210],cur[210],ans[160][160];
struct edge{
int to,next,w,W;
}a[10010];
inline void add(int u,int v,int w){
a[++cnt]=(edge){v,first[u],w,w};first[u]=cnt;
a[++cnt]=(edge){u,first[v],w,w};first[v]=cnt;
}
bool bfs(int s,int t){
int q[210],head=0,tail=1,i,u,v;
for(i=1;i<=n;i++) dep[i]=-1,cur[i]=first[i];
q[0]=s;dep[s]=0;
while(head<tail){
u=q[head++];
for(i=first[u];~i;i=a[i].next){
v=a[i].to;
if(~dep[v]||!a[i].w) continue;
dep[v]=dep[u]+1;q[tail++]=v;
}
}
return ~dep[t];
}
int dfs(int u,int t,int limit){
if(u==t||!limit) return limit;
int i,v,f,flow=0;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;
if(dep[v]==dep[u]+1&&(f=dfs(v,t,min(limit,a[i].w)))){
a[i].w-=f;a[i^1].w+=f;
flow+=f;limit-=f;
if(!limit) return flow;
}
}
return flow;
}
int dinic(int s,int t){
int re=0;
while(bfs(s,t)) re+=dfs(s,t,inf);
return re;
}
void clear(){
for(int i=0;i<=cnt;i++) a[i].w=a[i].W;
}
void init(){
memset(first,-1,sizeof(first));memset(a,0,sizeof(a));cnt=-1;
memset(ans,127,sizeof(ans));
}
int node[210],vis[210];
void cut(int u){
int i,v;vis[u]=1;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;
if(a[i].w&&!vis[v]) cut(v);
}
}
void solve(int l,int r){
if(l==r) return;
clear();int i,j,tmp,t[2][210]={0};
memset(vis,0,sizeof(vis));
tmp=dinic(node[l],node[r]);
cut(node[l]);
for(i=1;i<=n;i++)
if(vis[i])
for(j=1;j<=n;j++)
if(!vis[j])
ans[i][j]=ans[j][i]=min(ans[i][j],tmp);
for(i=l;i<=r;i++) t[vis[node[i]]][++t[vis[node[i]]][0]]=node[i];
for(i=l,j=1;j<=t[0][0];j++,i++) node[i]=t[0][j];
for(i=l+t[0][0],j=1;j<=t[1][0];j++,i++) node[i]=t[1][j];
solve(l,l+t[0][0]-1);solve(l+t[0][0],r);
}
int main(){
int i,j,k,T=read(),t1,t2,t3,q;
while(T--){
init();
n=read();m=read();
for(i=1;i<=m;i++) t1=read(),t2=read(),t3=read(),add(t1,t2,t3);
for(i=1;i<=n;i++) node[i]=i;
solve(1,n);
q=read();
for(k=1;k<=q;k++){
t1=read();int tmp=0;
for(i=1;i<=n;i++){
for(j=i+1;j<=n;j++) if(ans[i][j]<=t1) tmp++;
}
printf("%d\n",tmp);
}
puts("");
}
}
[ZJOI2011][bzoj2229] 最小割 [最小割树]的更多相关文章
- bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...
- scu - 3254 - Rain and Fgj(最小点权割)
题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...
- 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流
最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...
- 3532: [Sdoi2014]Lis 最小字典序最小割
3532: [Sdoi2014]Lis Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 865 Solved: 311[Submit][Status] ...
- HDU 1394 Minimum Inversion Number(最小逆序数 线段树)
Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...
- POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法
POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...
- 【BZOJ2229】[Zjoi2011]最小割 最小割树
[BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...
- 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)
思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...
- BZOJ2229[Zjoi2011]最小割——最小割树
题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...
- 最小割(zjoi2011,bzoj2229)(最小割树)
小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点\(s,t\)不在同一个部分中,则称 ...
随机推荐
- 前端面试题1:Object.prototype.toString.call() 、instanceof 以及 Array.isArray()三种方法判别数组的优劣和区别
1. Object.prototype.toString.call() 每一个继承 Object 的对象都有 toString 方法,如果 toString 方法没有重写的话,会返回 [Object ...
- cuda中当元素个数超过线程个数时的处理案例
项目打包下载 当向量元素超过线程个数时的情况 向量元素个数为(33 * 1024)/(128 * 128)=2.x倍 /* * Copyright 1993-2010 NVIDIA Corporati ...
- BeyondCompare:如何之比较文件内容的不同?
问题描述: 在使用beyond compare比较文件的时候,常会有很多不同,但是点击打开后,发现内容没有不同.这个是因为工具把文件的日期.大小等非内容因素也比较了进去. 解决方法: 点击“会话” - ...
- 海量数据GPS定位数据库表设计
在开发工业系统的数据采集功能相关的系统时,由于数据都是定时上传的,如每20秒上传一次的时间序列数据,这些数据在经过处理和计算后,变成了与时间轴有关的历史数据(与股票数据相似,如下图的车辆行驶过程中的油 ...
- 51nod——1640 天气晴朗的魔法 有边权限制的最大生成树
好好读题嗷:“所以我们要求阵中的魔法链的魔力值最大值尽可能的小,与此同时,魔力值之和要尽可能的大.” 第一条件是生成树的最大边权更小,第二条件是在最大边权的限制下搞一个最大生成树. 至于最大生成树,如 ...
- Centos7多内核情况下修改默认启动内核方法
1.1 进入grub.cfg配置文件存放目录/boot/grub2/并备份grub.cfg配置文件 [root@linux-node1 ~]# cd /boot/grub2/ [root@linux ...
- Python数据类型的用法
字符串的用法 res = 'hellow,world' print(res) #res.显示的都是它的方法,下划线的除外 1 判断字符串的结尾字符,返回的值的布尔形式 endswith 判断字符串的开 ...
- 用Python学分析 - 单因素方差分析
单因素方差分析(One-Way Analysis of Variance) 判断控制变量是否对观测变量产生了显著影响 分析步骤 1. 建立检验假设 - H0:不同因子水平间的均值无差异 - H1:不同 ...
- Kilani and the Game CodeForces - 1105D (bfs)
Kilani is playing a game with his friends. This game can be represented as a grid of size n×mn×m, wh ...
- 《鸟哥的Linux私房菜》学习笔记(5)——权限管理
一.权限的基本概念 权限:访问计算机资源或服务的访问能力. Linux中,每一个资源或者服务的权限, ...