题面

传送门

思路

首先我们明确一点:这道题不是让你把$n^2$个最小割跑一遍【废话】

但是最小割过程是必要的,因为最小割并没有别的效率更高的算法(Stoer-Wagner之类的?)

那我们就要尽量找办法减少做最大流(求最小割)的次数

最小割树

就像最小生成树一样,最小割也有自己的生成树

我们新建立一个有n个点,没有边的无向图

我们在原无向图中任选两个点S,T,求出S-T最小割,那么可以在S-T中间加一条权值等于最小割值得无向边

然后,分别对S属于的点集合和T属于的点集合递归做上面的过程,直到当前处理的集合只剩下一个点了

现在,对于这棵新树(显然是一棵树,可以自己退一下为什么),有一个结论:

树上任意两个点在原图中的对应点之间的最小割值等于这两个点的树上路径中边权的最小值

证明?我也不知道啊!

但是这个算法的正确性是可以保证的(你也可以感性理解一下qwq)

做法

有了这个“大杀器”以后,这道题也就迎刃而解了~

这道题目的点数很小,因此我们只要把所有搞出来的最小割值依此更新点对

处理询问的时候就把所有的点对扫一遍输出就好了

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define inf 1e9
using namespace std;
inline int read(){
int re=0,flag=1;
scanf("%d",&re);return re;
char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int n,m,cnt,first[210],dep[210],cur[210],ans[160][160];
struct edge{
int to,next,w,W;
}a[10010];
inline void add(int u,int v,int w){
a[++cnt]=(edge){v,first[u],w,w};first[u]=cnt;
a[++cnt]=(edge){u,first[v],w,w};first[v]=cnt;
}
bool bfs(int s,int t){
int q[210],head=0,tail=1,i,u,v;
for(i=1;i<=n;i++) dep[i]=-1,cur[i]=first[i];
q[0]=s;dep[s]=0;
while(head<tail){
u=q[head++];
for(i=first[u];~i;i=a[i].next){
v=a[i].to;
if(~dep[v]||!a[i].w) continue;
dep[v]=dep[u]+1;q[tail++]=v;
}
}
return ~dep[t];
}
int dfs(int u,int t,int limit){
if(u==t||!limit) return limit;
int i,v,f,flow=0;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;
if(dep[v]==dep[u]+1&&(f=dfs(v,t,min(limit,a[i].w)))){
a[i].w-=f;a[i^1].w+=f;
flow+=f;limit-=f;
if(!limit) return flow;
}
}
return flow;
}
int dinic(int s,int t){
int re=0;
while(bfs(s,t)) re+=dfs(s,t,inf);
return re;
}
void clear(){
for(int i=0;i<=cnt;i++) a[i].w=a[i].W;
}
void init(){
memset(first,-1,sizeof(first));memset(a,0,sizeof(a));cnt=-1;
memset(ans,127,sizeof(ans));
}
int node[210],vis[210];
void cut(int u){
int i,v;vis[u]=1;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;
if(a[i].w&&!vis[v]) cut(v);
}
}
void solve(int l,int r){
if(l==r) return;
clear();int i,j,tmp,t[2][210]={0};
memset(vis,0,sizeof(vis));
tmp=dinic(node[l],node[r]);
cut(node[l]);
for(i=1;i<=n;i++)
if(vis[i])
for(j=1;j<=n;j++)
if(!vis[j])
ans[i][j]=ans[j][i]=min(ans[i][j],tmp);
for(i=l;i<=r;i++) t[vis[node[i]]][++t[vis[node[i]]][0]]=node[i];
for(i=l,j=1;j<=t[0][0];j++,i++) node[i]=t[0][j];
for(i=l+t[0][0],j=1;j<=t[1][0];j++,i++) node[i]=t[1][j];
solve(l,l+t[0][0]-1);solve(l+t[0][0],r);
}
int main(){
int i,j,k,T=read(),t1,t2,t3,q;
while(T--){
init();
n=read();m=read();
for(i=1;i<=m;i++) t1=read(),t2=read(),t3=read(),add(t1,t2,t3);
for(i=1;i<=n;i++) node[i]=i;
solve(1,n);
q=read();
for(k=1;k<=q;k++){
t1=read();int tmp=0;
for(i=1;i<=n;i++){
for(j=i+1;j<=n;j++) if(ans[i][j]<=t1) tmp++;
}
printf("%d\n",tmp);
}
puts("");
}
}

[ZJOI2011][bzoj2229] 最小割 [最小割树]的更多相关文章

  1. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  2. scu - 3254 - Rain and Fgj(最小点权割)

    题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...

  3. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  4. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  5. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  6. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  7. 【BZOJ2229】[Zjoi2011]最小割 最小割树

    [BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...

  8. 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)

    思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...

  9. BZOJ2229[Zjoi2011]最小割——最小割树

    题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...

  10. 最小割(zjoi2011,bzoj2229)(最小割树)

    小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点\(s,t\)不在同一个部分中,则称 ...

随机推荐

  1. github相关问题

    一.项目编译打包后生成的dist文件夹后:项目提交到github上dist文件提交不上去. 在.gitignore文件,删除一行 二.更改github的语言属性 .gitattributes文件:若项 ...

  2. ABAP读取长文本的方法

    SAP中所有的项目文本都存在以下两张数据表中: 1. STXH  抬头项目文本 透明表 2. STXL  明细项目文本   透明表 长文本读取方法 首先在STXH和STXL中根据OBJECT NAME ...

  3. windows 解决缺失.dll的问题

    1.缺失MSVCR120.dell和MSVCP120.dll,如图: 这种问题是因为没有Microsoft Visual C++ 2013运行库的问题,自行百度在Microsoft官网下载即可,注意需 ...

  4. hprose 1.0(rpc 框架) - 内部数据标准

    hprose 1.0 内部数据标准 方法的描述  {    // 请求调用格式    'C'.writeString('method1').'a'.count($params).'{'.'m'.cou ...

  5. SoapUI(一)之webservice测试

    webservice测试需要具备的条件: 1.了解业务需求:如从客户端发送一个post请求给服务器,服务器将响应传给客户端. 2.需要一个明确的wsdl地址: 如天气预报的接口链接:http://ww ...

  6. POJ:2185-Milking Grid(KMP找矩阵循环节)

    Milking Grid Time Limit: 3000MS Memory Limit: 65536K Description Every morning when they are milked, ...

  7. 动态规划:HDU1789-Doing Homework again

    Doing Homework again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. Sliding Window POJ - 2823

    Description An array of size n ≤ 106 is given to you. There is a sliding window of size k which is m ...

  9. POJ 2311 Cutting Game(SG函数)

    Cutting Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4806   Accepted: 1760 Desc ...

  10. 1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9016  Solved: 4085[Submit][Sta ...