Consider an n \times mn×m matrix of ones and zeros. For example, this 4 \times 44×4:

\displaystyle \begin{matrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{matrix}1000​1111​1111​1110​

We can compute even parity for each row, and each column. In this case, the row parities are [0, 1, 1, 0][0,1,1,0] and the column parities are [1, 0, 0, 1][1,0,0,1] (the parity is 11 if there is an odd number of 11s in the row or column, 00 if the number of 11s is even). Note that the top row is row 11, the bottom row is row nn, the leftmost column is column 11, and the rightmost column is column mm.

Suppose we lost the original matrix, and only have the row and column parities. Can we recover the original matrix? Unfortunately, we cannot uniquely recover the original matrix, but with some constraints, we can uniquely recover a matrix that fits the bill. Firstly, the recovered matrix must contain as many 11’s as possible. Secondly, of all possible recovered matrices with the most 11’s, use the one which has the smallest binary value when you start with row 11, concatenate row 22 to the end of row 11, then append row 33, row 44, and so on.

Input Format

Each input will consist of a single test case.

Note that your program may be run multiple times on different inputs.

Each test case will consist of exactly two lines.

The first line will contain a string R (1 \le |R| \le 50)R(1≤∣R∣≤50), consisting only of the characters 00 and 11. These are the row parities, in order.

The second line will contain a string C (1 \le |C| \le 50)C(1≤∣C∣≤50), consisting only of the characters 00 and 11. These are the column parities, in order.

Output Format

If it is possible to recover the original matrix with the given constraints, then output the matrix as |R|∣R∣ lines of exactly |C|∣C∣ characters, consisting only of 00’s and 11’s. If it is not possible to recover the original matrix, output -1−1.

样例输入1

0110
1001

样例输出1

1111
0111
1110
1111

样例输入2

0
1

样例输出2

-1

样例输入3

11
0110

样例输出3

1011
1101

题目来源

The North American Invitational Programming Contest 2018

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include <deque>
using namespace std;
#define ll long long
#define N 60
#define gep(i,a,b) for(int i=a;i<=b;i++)
#define gepp(i,a,b) for(int i=a;i>=b;i--)
#define gep1(i,a,b) for(ll i=a;i<=b;i++)
#define gepp1(i,a,b) for(ll i=a;i>=b;i--)
#define mem(a,b) memset(a,b,sizeof(a))
char s1[N],s2[N];
int a[N],b[N];
char s[N][N];
int main()
{
scanf("%s%s",s1,s2);
int l=strlen(s1);
int r=strlen(s2);
int x=l%,y=r%;
int cnt1=,cnt2=;
gep(i,,l-){
int ii=s1[i]-'';
if(ii%!=y){
a[cnt1++]=i;
}
}
gep(i,,r-){
int ii=s2[i]-'';
if(ii%!=x){
b[cnt2++]=i;
}
}
if((cnt1+cnt2)&){//必须为偶数
printf("-1\n");
return ;
}
while(cnt1<cnt2) a[cnt1++]=;
while(cnt2<cnt1) b[cnt2++]=;
sort(a,a+cnt1);sort(b,b+cnt2);//贪心
gep(i,,l-){
gep(j,,r-){
s[i][j]='';
}
}
gep(i,,cnt1-){
s[a[i]][b[i]]='';//这些点必须为0
}
gep(i,,l-){
printf("%s\n",s[i]);
}
return ;
}

The North American Invitational Programming Contest 2018 H. Recovery的更多相关文章

  1. The North American Invitational Programming Contest 2018 D. Missing Gnomes

    A family of nn gnomes likes to line up for a group picture. Each gnome can be uniquely identified by ...

  2. The North American Invitational Programming Contest 2018 E. Prefix Free Code

    Consider nn initial strings of lower case letters, where no initial string is a prefix of any other ...

  3. North American Invitational Programming Contest 2018

    A. Cut it Out! 枚举第一刀,那么之后每切一刀都会将原问题划分成两个子问题. 考虑DP,设$f[l][r]$表示$l$点顺时针一直到$r$点还未切割的最小代价,预处理出每条边的代价转移即可 ...

  4. The North American Invitational Programming Contest 2017 题目

    NAIPC 2017 Yin and Yang Stones 75.39% 1000ms 262144K   A mysterious circular arrangement of black st ...

  5. North American Invitational Programming Contest (NAIPC) 2017

    (待补) A. Pieces of Parentheses 将括号处理完成后排序,方式参加下面的博客.然后做一遍背包即可. 2018 Multi-University Training Contest ...

  6. North American Invitational Programming Contest (NAIPC) 2016

    (待补) A. Fancy Antiques 爆搜. B. Alternative Bracket Notation C. Greetings! D. Programming Team 0/1分数规划 ...

  7. AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...

  8. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...

  9. 2014 ACM-ICPC Beijing Invitational Programming Contest

    点击打开链接 Happy Reversal Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      J ...

随机推荐

  1. Hive_Hive的管理_web界面方式

    端口:9999启动方式: hive --service hwi &通过浏览器访问:http://<IP地址>:9999/hwi/ 执行启动命令后,报错,找不到hive-hwi-*. ...

  2. MFC中的模态对话框与非模态对话框

    模态对话框创建: MyDialog mydlg; mydlg.DoModal() 当前只能运行此模态对话框,且停止主窗口的运行,直到模态对话框退出,才允许主窗口运行. 模态对话框的关闭顺序: OnCl ...

  3. 将Form以强类型Model提交,后台获取不到的问题

    F.TextBoxFor(m => m.Name) 不能自定ID属性

  4. C#入门笔记2 变量

    变量关系到数据的存储,一个供程序操作的存储区的名字,每一个变量都一个特定的类型,类型决定变量的内存大小和布局. 注:必须一定要先声明,赋值后,才能使用. 变量声明 三种声明方式: 1.先声明,后赋值. ...

  5. 洛谷P4017 最大食物链计数

    拓扑排序板子题 #include <iostream> #include <cstdio> #include <cstring> #include <queu ...

  6. windows下jdk环境变量配置

    JAVA_HOMEC:\Program Files\Java\jdk1.8.0_131 JMETER_HOMEC:\jmeter\jmeter3.2 CLASSPATH%JAVA_HOME%\lib; ...

  7. 在Windows笔记本上调试运行在iOS设备上的前端应用

    我在每天工作中需要在不同的移动设备上测试我们开发的前端应用是否正常工作,比如iOS设备和Android设备.我用的工作笔记本电脑又是Lenovo的,安装的是Windows操作系统. 有的时候一个开发好 ...

  8. dp 20190618

    C. Party Lemonade 这个题目是贪心,开始我以为是背包,不过也不太好背包,因为这个L都已经是1e9了. 这个题目怎么贪心呢?它是因为这里有一个二倍的关系,所以说val[i]=val[i- ...

  9. python基础一 day10(2)

    复习: # 三元运算符# 接收结果的变量 = 条件为真的结果 if 条件 else 条件为假的结果# 接收结果的变量 = “真结果” if 条件 else “假结果”## 命名空间 和 作用域# 三种 ...

  10. Ubuntu 18.04 上使用 OpenJDK 安装并运行 Tomcat

    在Linux上安装与卸载JDK和JRE,两种常用方法: 一.通过 apt-get 命令在线进行安装与卸载(会自动配置好环境变量) 二.通过下载并解压 .tar.gz 包进行手动安装与手动卸载(需要手动 ...