长度为 n≤1000 的数列 ai,其中最长上升子序列的长度为 s。至少删去多少数使得最长上升子序列的长度小于 s。


其实这题和那个求有多少不重叠LIS是一样答案的.

先放个图。

图丑别说我。

原网络的意思是从s到t是一条lis,那我们就对这个图进行破坏,求出一个最小割使它不连通即可。这里有几个问题。为什么是最小割?可以看出,删数操作就相当于把那个拆点间的边删掉,并且这种删法是最优的(看图想一想),比删入度,出度价值更少。那么就可以把删数想象为求最小割即最大流啦。最小割去掉后的数列不会再出现一个长s的lis吗?不会的,如果有,那删之前应该也是存在的,那就应该被删掉,与现在又出现矛盾,故不会出现。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;char c;while(!isdigit(c=getchar()))if(isalpha(c))return x=(int)c;
while(isdigit(c))x=(x<<)+(x<<)+(c^),c=getchar();return x;
}
const int N=+,M=+,INF=0x3f3f3f3f;
int w[M<<],v[M<<],Next[M<<],Head[N<<],cur[N<<],dis[N<<],tot,s,t,n;
inline void Addedge(int x,int y,int z){
v[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;
v[++tot]=x,Next[tot]=Head[y],Head[y]=tot,w[tot]=;
}
#define y v[j]
inline char bfs(){
queue<int> q;q.push(s),memset(dis,,sizeof dis),dis[s]=;
for(register int i=;i<=(n<<)+;++i)cur[i]=Head[i];
while(!q.empty()){
int x=q.front();q.pop();
for(register int j=Head[x];j;j=Next[j])if(w[j]&&!dis[y]){
dis[y]=dis[x]+,q.push(y);
if(y==t)return ;
}
}
return ;
}
int dinic(int x,int flow){
if(!flow||x==t)return flow;
int rest=flow,k;
for(register int j=cur[x];j&&rest;cur[x]=j,j=Next[j])if(w[j]&&dis[y]==dis[x]+){
if(!(k=dinic(y,_min(rest,w[j]))))dis[y]=;
rest-=k,w[j]-=k,w[j^]+=k;
}
return flow-rest;
}
#undef y
int a[N],f[N],ans,maxflow,T; int main(){//freopen("P2766.in","r",stdin);//freopen("P2766.txt","w",stdout);
read(T);while(T--){
tot=;read(n);s=(n<<)+,t=s+,ans=maxflow=;
memset(Head,,sizeof Head);
for(register int i=;i<=n;++i){
read(a[i]);f[i]=;
for(register int j=;j<i;++j)if(a[j]<a[i])MAX(f[i],f[j]+);
for(register int j=;j<i;++j)if(a[j]<a[i]&&f[j]+==f[i])Addedge(j+n,i,);
MAX(ans,f[i]);Addedge(i,i+n,);if(f[i]==)Addedge(s,i,);
}
for(register int i=;i<=n;++i)if(f[i]==ans)Addedge(i+n,t,);
while(bfs())maxflow+=dinic(s,INF);
printf("%d\n",maxflow);
}
return ;
}

hdu3739 Anti LIS[最小割]的更多相关文章

  1. BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)

    BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...

  2. 【BZOJ-3532】Lis 最小割 + 退流

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 704  Solved: 264[Submit][Status] ...

  3. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  4. [bzoj3532][Sdoi2014]Lis——拆点最小割+字典序+退流

    题目大意 给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci.请删除若 干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案. 如果有多种方案,请输出将删去项的附加属性 ...

  5. P3308-[SDOI2014]LIS【最小割】

    正题 题目链接:https://www.luogu.com.cn/problem/P3308 题目大意 三个\(n\)个数字的序列\(A,B,C\).要求删除其中某些位置\(i\)使得\(A\)的最长 ...

  6. P3308 [SDOI2014]LIS(最小割+退流)

    传送门 设\(f[i]\)为以\(i\)结尾的最长上升子序列.可以考虑建这样一张图,对于所有的\(i<j,f[j]=f[i+1]\)连边\((i,j)\),\(f[i]=1\)的话连边\((S, ...

  7. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  8. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  9. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

随机推荐

  1. jQuery Mobile开发的新闻阅读器,适应iphone和android手机

    程序猿都非常赖.你懂的! 我们常常上新浪,腾讯.雅虎等各大站点上面看新闻.他们也都各自推出了自家的手机新闻阅读器.今天我自己使用jQuery Mobile 来实现这一功能.图片大小上传限制了大小250 ...

  2. Android Camera API2中采用CameraMetadata用于从APP到HAL的参数交互

    前沿: 在全新的Camera API2架构下,常常会有人疑问再也看不到熟悉的SetParameter/Paramters等相关的身影,取而代之的是一种全新的CameraMetadata结构的出现,他不 ...

  3. log4j入门及常用配置

      <pre class="java" name="code">import org.apache.log4j.BasicConfigurator; ...

  4. Linux U盘只读解决方法

    Linux Fat的U盘只读,这个问题经常出现,原因大家都说了是U盘的错误,出现这种情况后,一般的解决方案是 mount | grep <U盘的标签> # 找到你的U盘的对应的设备名称,如 ...

  5. SpringBoot学习——运行原理学习及自定义Starter pom

    例如:pom文件 导入redis jar包 springboot怎么识别和集成? https://blog.csdn.net/flygoa/article/details/68484439 https ...

  6. 卸载gnu gcj

    麻辣个鸡的,我在Linux上安装的jkd版本是1.8,然后可能是之后安装了GCC吧,他大爷的,java版本变成了1.5.这个残酷的事实是在我写练习Package的测试文件的时候搞得. 机智的看了一下j ...

  7. 牛牛有一个鱼缸。鱼缸里面已经有n条鱼,每条鱼的大小为fishSize[i] (1 ≤ i ≤ n,均为正整数),牛牛现在想把新捕捉的鱼放入鱼缸。鱼缸内存在着大鱼吃小鱼的定律。经过观察,牛牛发现一条鱼A的大小为另外一条鱼B大小的2倍到10倍(包括2倍大小和10倍大小),鱼A会吃掉鱼B。考虑到这个,牛牛要放入的鱼就需要保证:1、放进去的鱼是安全的,不会被其他鱼吃掉 2、这条鱼放进去也不能吃掉其他鱼

    // ConsoleApplication5.cpp : 定义控制台应用程序的入口点. // #include<vector> #include<algorithm> #inc ...

  8. JavaScrip函数与声明表达式

    首先我们看下函数的两种命名方式 1.函数声明,声明一个函数 function test1(){ var a=0; console.log(a); //左一些操作... } 执行结果如下 我们看一下,无 ...

  9. Python学习总结之三 -- 优雅的字符串

    优雅的字符串 前言 记得我在Python学习总结第一篇中有提到字符串,那个可以算是先打个招呼吧,因为没有提到任何关于字符串的处理方法.今天,给大家详细讲解一下Python中字符串的使用方法,如有不当或 ...

  10. C#高级编程 第十五章 反射

    (二)自定义特性 使自定义特性非常强大的因素时使用反射,代码可以读取这些元数据,使用它们在运行期间作出决策. 1.编写自定义特性 定义一个FieldName特性: [AttributeUsage(At ...