题目大意:

给定一个长度为n的整数序列.在改变的数最小的和改变的幅度最小的前提下把它变成一个单调严格上升的序列.求改变的最小的数和这个幅度。

题解:

(貌似以前考试考过这道题)

其实这道题就是两道题拼一块的

我们首先考虑第一问

这是一个经典模型,我们有

当有\(i - j \leq a_i - a_j\)\(a_i\)和\(a_j\)不用更改\((i > j)\)

所以我们变号得到\(a_j - j \leq a_i - i\)

所以我们将所有序列中的值减去下标再做一遍最长不下降子序列即可

然后我们使用减去了下标的那个数组作为第二问的初始数组

我们设\(f[i]\)为第一问的LCIS的dp数组,\(g[i]\)表示第二问的dp数组

(均表示1~i的答案)

我们有\(g[i] = min{g[j] + calc(j+1,i)}\text{当且仅当}(f[i] == f[j] + 1)\)

由...ydc的题解我们知道...

现在一个结论是,calc(j,i)的方案,一定会以某个k 为分界使得[j,k] 均为\(b_j\) 且\([k+1,i]\) 均为\(a_i\)

证明已跪...

所以我们利用这个性质统计答案即可

(很抱歉我连怎么用都不会,%了一发hzwer的代码)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
const ll maxn = 35010;
const ll inf1 = 1<<30;
const ll inf2 = 1LL<<60;
// inline ll abs(ll x){
// return x < 0 ? -x : x;
// }
struct Edge{
ll to,next;
}G[maxn];
ll head[maxn],cnt;
void add(ll u,ll v){
G[++cnt].to = v;
G[cnt].next = head[u];
head[u] = cnt;
}
ll a[maxn],f[maxn],m[maxn],g[maxn];
ll lim;
inline ll find(ll x){
ll l = 1,r = lim,ret = 0;
while(l <= r){
ll mid = (l+r) >> 1;
if(m[mid] <= x) ret = mid,l = mid+1;
else r = mid - 1;
}return ret;
}
ll suma[maxn],sumb[maxn];
int main(){
memset(m,0x3f,sizeof m);
ll n;read(n);
for(ll i=1;i<=n;++i) read(a[i]),a[i] -= i;
a[++n] = inf1;m[0] = -inf1;
for(ll i=1;i<=n;++i){
f[i] = find(a[i]) + 1;
//printf("f[%d] = %d\n",i,f[i]);
lim = max(lim,f[i]);
m[f[i]] = min(a[i],m[f[i]]);
}
for(ll i = n;i>=0;--i) add(f[i],i),g[i] = 1LL<<60;
a[0] = -inf1;g[0] = 0;
#define v G[p].to
for(ll u = 1;u<=n;++u){
for(ll p = head[f[u]-1];p;p=G[p].next){
if(v > u) break;
if(a[v] > a[u]) continue;
suma[v-1] = sumb[v-1] = 0;
for(ll i=v;i<=u;++i){
suma[i] = suma[i-1] + abs(a[v] - a[i]);
sumb[i] = sumb[i-1] + abs(a[u] - a[i]);
}
for(ll i=v;i<=u;++i){
// printf("%d <- %d\n",g[u],g[v] + suma[i] - suma[v] + sumb[u] - sumb[i]);
g[u] = min(g[u],g[v] + suma[i] - suma[v] + sumb[u] - sumb[i]);
}
}
}
#undef v
printf("%lld\n%lld\n",n-f[n],g[n]);
getchar();getchar();
return 0;
}

bzoj 1049: 数字序列 dp的更多相关文章

  1. BZOJ 1049 数字序列

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个数 ...

  2. BZOJ 1049 数字序列(LIS)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1049 题意:给出一个数列A,要求:(1)修改最少的数字使得数列严格递增:(2)在( ...

  3. 【BZOJ1049】【Luogu P2501】 [HAOI2006]数字序列 DP,结论,LIS

    很有(\(bu\))质(\(hui\))量(\(xie\))的一个题目. 第一问:求最少改变几个数能把一个随机序列变成单调上升序列. \(Solution:\)似乎是一个结论?如果两个数\(A_i\) ...

  4. bzoj 4244 括号序列dp

    将各种情况绕环等看作括号序列,括号内的区域上下都需要累加答案,左右也是 f[i][j] 代表 前i个车站已经处理完的有j个左括号的最小权值 我们可以发现,更新的来源来自于 i-1, 和 i 将上 描述 ...

  5. BZOJ1049:[HAOI2006]数字序列(DP)

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列. 但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个 ...

  6. 【BZOJ1049】 [HAOI2006]数字序列

    BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...

  7. 【BZOJ】【1049】【HAOI2006】数字序列

    DP 第一问比较水……a[i]-=i 以后就变成最长不下降子序列问题了,第二问这个结论好神奇,考试的时候怎么破?大胆猜想,不用证明?TAT 题解:http://pan.baidu.com/share/ ...

  8. 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)

    1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...

  9. bzoj 1049 [HAOI2006]数字序列

    [bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...

随机推荐

  1. 将C#文档注释生成.chm帮助文档(转)

    由于最近需要把以前的一个项目写一个文档,但一时又不知道写成怎样的,又恰好发现了可以生成chm的工具,于是乎我就研究了下,感觉还不错,所以也给大家分享下.好了,不多废话,下面就来实现一下吧. 生成前的准 ...

  2. Android中BaseAdapter使用基础点

    Android中要填充一些控件(如ListView)经常须要用到Adapter来实现,经常使用的有ArrayAdapter,SimpleAdapter, CursorAdapter,BaseAdapt ...

  3. java eclipse使用不同jdk版本

    因为开发需要,两个工程分别需要使用jdk1.6(elipse indigo)和jdk1.8(eclipse neon).因为两个eclipse对于jdk版本的要求不同,若只在环境变量中配置jdk版本, ...

  4. 新西兰天维网登录发送明文password

    新西兰比較有人气的华人社区站点是天维网(新西兰天维网),是这边华人用中文吐槽常常上的论坛,也是华人之间各种交易(比方买卖二手车)的集散地.上次非诚勿扰新西兰专场就是天维网承办的宣传和报名.来新西兰定居 ...

  5. python 基础 6.0 异常的常用形式

    一. 异常   异常既是一个时间,该事件会在程序执行过程中发生,影响了程序的正常执行.一般情况下,在python无法正常处理程序时就会发生一个异常.异常是python对象,表示一个错误.当python ...

  6. 小程序的生命周期 launchApp

    https://developers.weixin.qq.com/miniprogram/dev/api/launchApp.html?search-key=生命周期 launchApp(OBJECT ...

  7. 交易准实时预警 kafka topic 主题 异常交易主题 低延迟 event topic alert topic 内存 算法测试

    https://www.ibm.com/developerworks/cn/opensource/os-cn-kafka/index.html 周 明耀2015 年 6 月 10 日发布 示例:网络游 ...

  8. linux安装mongodb,设为全局和后台启动

    curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.6.5.tgz # 下载 tar -zxvf mongodb-linux ...

  9. ZOJ - 3930 Dice Notation 【模拟】

    题目链接 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3930 题意 给出一串字符串 如果是 '+' '-' '*' '/ ...

  10. 线性结构2 一元多项式的乘法与加法运算 【STL】

    02-线性结构2 一元多项式的乘法与加法运算(20 分) 设计函数分别求两个一元多项式的乘积与和. 输入格式: 输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和 ...