题意:

$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$

求解$\sum_{i=1}^n{ F_i i^K } \  mod \  10^9+7$。

解法:

记$S(n,m) = \sum_{i=1}^n { F_i i^m}$

这样有:

$$S(2n,m)  = \sum_{i=1}^n{F_i i^m} + \sum_{i=1}^n{F_{i+n} (i+n)^m}$$

记$G = \lgroup \begin{matrix} 1 & 1 \\ 1 & 0 \end{matrix} \rgroup$

有$F_n = G_{1,1}$

将$S(n,m)$的含义换为对应求和的矩阵。

1.考虑从$S(n,m)$推到$S(2n,m)$

$$S(2n,m) = \sum_{i=1}^n{G^n i^m} + G^n \sum_{i=1}^n{G^{i} (i+n)^m}$$

$$S(2n,m) = \sum_{i=1}^n{G^n i^m} + G^n \sum_{i=1}^n{G^{i} \sum_{r=0}^m{i^rm^{m-r}C_m^r}}$$

$$S(2n,m) = \sum_{i=1}^n{G^n i^m} + G^n \sum_{r=0}^m{m^{m-r}C_m^r S(n,r)}$$

这样$O(K)$完成单次转移。

2.考虑从$S(n,m)$推到$S(n+1,m)$

$$S(n+1,m) = S(n,m) + (n+1)^m G^{n+1}$$

这样分治下去,总效率$O(K^2 logn)$

(注意本题中n过大,要先对于n取模再进行乘法)

 #include <iostream>
#include <cstdio>
#include <cstring> #define LL long long
#define P 1000000007LL using namespace std; struct MA
{
LL a[][]; void init()
{
memset(a,,sizeof(a));
} MA operator*(const MA &x)const
{
MA c;
for(int i=,j,k;i<;i++)
for(j=;j<;j++)
{
c.a[i][j]=;
for(k=;k<;k++)
{
c.a[i][j]+=a[i][k]*x.a[k][j]%P;
if(c.a[i][j]>=P) c.a[i][j]-=P;
}
}
return c;
} MA operator*(const LL &x)const
{
MA c;
for(int i=,j;i<;i++)
for(j=;j<;j++)
c.a[i][j] = a[i][j]*x%P;
return c;
} MA operator+(const MA &x)const
{
MA c;
for(int i=,j;i<;i++)
for(j=;j<;j++)
c.a[i][j] = (a[i][j]+x.a[i][j])%P;
return c;
} void print()
{
puts("Matrix");
for(int i=,j;i<;i++)
{
for(j=;j<;j++) cout<<a[i][j]<<' ';
cout<<endl;
}
}
}; MA G,Gn;
MA S[][];
LL n,power[],C[][];
int K,now; void solve(LL n)
{
if(n==)
{
now=;
Gn = G;
for(int i=;i<=K;i++) S[now][i] = G;
return;
}
solve(n>>);
now^=;
MA tmp;
power[]=;
for(int k=;k<=K;k++) power[k] = power[k-]*((n>>1LL)%P)%P;
for(int k=;k<=K;k++)
{
tmp.init();
for(int r=;r<=k;r++)
tmp = tmp + ( S[now^][r] * (C[k][r]*power[k-r]%P) );
S[now][k] = S[now^][k] + (Gn * tmp);
}
Gn = Gn*Gn;
if(n&)
{
Gn = Gn*G;
power[]=1LL;
for(int k=;k<=K;k++)
{
S[now][k] = S[now][k] + (Gn * power[k]);
power[k+] = power[k]*(n%P)%P;
}
}
} int main()
{
G.a[][]=; G.a[][]=;
G.a[][]=; G.a[][]=;
while(~scanf("%I64d%d",&n,&K))
{
C[][]=;
for(int i=;i<=K;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
{
C[i][j] = C[i-][j-]+C[i-][j];
if(C[i][j]>=P) C[i][j] -= P;
}
}
solve(n);
cout << S[now][K].a[][] << endl;
}
return ;
}

Yet Another Number Sequence的更多相关文章

  1. HDU 1005 Number Sequence

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  2. POJ 1019 Number Sequence

    找规律,先找属于第几个循环,再找属于第几个数的第几位...... Number Sequence Time Limit: 1000MS Memory Limit: 10000K Total Submi ...

  3. HDOJ 1711 Number Sequence

    Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. Number Sequence

    Number Sequence   A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) ...

  5. [AX]AX2012 Number sequence framework :(三)再谈Number sequence

    AX2012的number sequence framework中引入了两个Scope和segment两个概念,它们的具体作用从下面序列的例子说起. 法国/中国的法律要求财务凭证的Journal nu ...

  6. KMP - HDU 1711 Number Sequence

    Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. hdu 1005:Number Sequence(水题)

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  8. Number Sequence 分类: HDU 2015-06-19 20:54 10人阅读 评论(0) 收藏

    Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...

  9. HDU 1711 Number Sequence(数列)

    HDU 1711 Number Sequence(数列) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...

  10. HDU 1005 Number Sequence(数列)

    HDU 1005 Number Sequence(数列) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...

随机推荐

  1. 基于RFS(robot framework selenium)框架模拟POST/GET请求执行自动化接口测试

    打开RIDE添加测试用例 如: Settings         Library Collections       Library RequestsLibrary       Test Cases ...

  2. 可空类型Nullable

    Nullable类型: 值类型变量默认为0,不可空,为了使它可空,出现了Nullable类型,类型前面加?  变为引用类型 值类型是没有null值的,比如int,DateTime,它们都有默认值.举个 ...

  3. vim调试

    首先,想调试一个程序的话,输入以下命令: guest-djjtew@ubuntu:~$ python3 -m pdb 1.py 这时候就停止了,等待着你的输入,然后输入"l"的话, ...

  4. C++基本数据类型及类型转换

    http://blog.csdn.net/pipisorry/article/details/25346379 c++基本数据类型 什么样的数据算是byte类型,int类型,float类型,doubl ...

  5. ReentrantLock和Synchronized

    1 synchronized 1.1 一旦没有获取到就只能一直等待 A和B都获取同一个对象锁,如果A获取了,B没有获取到,那么在A释放该锁之前,B只能无穷等待下去. 1.2 synchronized是 ...

  6. ElasticSearch(一)什么是全文检索?

    全文检索 全文检索,即倒排索引.

  7. BZOJ3231: [Sdoi2008]递归数列

    BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...

  8. HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂

    题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...

  9. Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集

    题目链接:http://codeforces.com/contest/699/problem/D D. Fix a Tree time limit per test 2 seconds memory ...

  10. yii中调取字段名称时label与labelEx的区别

    $form = $this->beginWidget('CActiveForm',array('id' => 'userRegisterForm')); echo $form->la ...