题意:给定M*N的数码图,问能否移动到最终状态

分析

有解的判定条件可见 八数码有解条件

值得一提的是,这道题求逆序对卡树状数组,只能用归并排序。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std; const int maxn = 1e6 + ;
int n,m,pos,x,ans,zero;
int seq[maxn],tmp[maxn]; void msort(int l,int r) //对seq进行排序
{
if(l==r) return ;
int mid=(l+r)>>;
msort(l,mid);
msort(mid+,r);
int i=l,j=mid+,k=l-;
while(i<=mid&&j<=r)
{
if(seq[i]<=seq[j])
tmp[++k]=seq[i],i++;
else tmp[++k]=seq[j],j++,ans+=mid-i+; //ans就是逆序对个数
}
while(i<=mid)
tmp[++k]=seq[i],i++;
while(j<=r)
tmp[++k]=seq[j],j++;
for(int qwq=l;qwq<=r;qwq++)
seq[qwq]=tmp[qwq];
} int main()
{
while(scanf("%d%d",&n,&m)== && m)
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%d",&x);
if(x) seq[++pos]=x;
else zero=n-i;
}
msort(,pos);
if(m&) zero=;
if((ans+zero)%==) printf("YES\n");
else printf("NO\n");
ans=;pos=;zero=;
}
return ;
}

参考链接:https://www.cnblogs.com/nopartyfoucaodong/p/9673434.html

POJ 2893 M × N Puzzle——八数码有解条件的更多相关文章

  1. 2019HDU多校第四场 Just an Old Puzzle ——八数码有解条件

    理论基础 轮换与对换 概念:把 $S$ 中的元素 $i_1$ 变成 $i_2$,$i_2$ 变成 $i_3$ ... $i_k$ 又变成 $i_1$,并使 $S$ 中的其余元素保持不变的置换称为循环, ...

  2. POJ 2893 M × N Puzzle(树状数组求逆序对)

                                                               M × N Puzzle Time Limit: 4000MS   Memory ...

  3. POJ 2893 M × N Puzzle

    逆序对 n 数码问题的扩展 对于一个n * m 的问题来说,结论和 列数 m 奇偶有关 对于 m 是奇数来说 , 两个局面互相可达,当且仅当这两个局面按顺序写成一个数列,这个数列的逆序对数的奇偶性相同 ...

  4. BFS(八数码) POJ 1077 || HDOJ 1043 Eight

    题目传送门1 2 题意:从无序到有序移动的方案,即最后成1 2 3 4 5 6 7 8 0 分析:八数码经典问题.POJ是一次,HDOJ是多次.因为康托展开还不会,也写不了什么,HDOJ需要从最后的状 ...

  5. poj 1077-Eight(八数码+逆向bfs打表)

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've see ...

  6. Eight POJ - 1077 HDU - 1043 八数码

    Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...

  7. poj 1077 Eight (八数码问题——A*+cantor展开+奇偶剪枝)

    题目来源: http://poj.org/problem?id=1077 题目大意: 给你一个由1到8和x组成的3*3矩阵,x每次可以上下左右四个方向交换.求一条路径,得到12345678x这样的矩阵 ...

  8. Poj 1077 eight(BFS+全序列Hash解八数码问题)

    一.题意 经典的八数码问题,有人说不做此题人生不完整,哈哈.给出一个含数字1~8和字母x的3 * 3矩阵,如: 1  2  X            3 4  6            7  5  8 ...

  9. ACM/ICPC 之 BFS-广搜进阶-八数码(经典)(POJ1077+HDU1043)

    八数码问题也称为九宫问题.(本想查查历史,结果发现居然没有词条= =,所谓的历史也就不了了之了) 在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同.棋盘上还有一个 ...

随机推荐

  1. 《Tsinghua os mooc》第21~22讲 文件系统

    第二十一讲 文件系统 文件系统是操作系统中管理持久性数据的子系统,提供数据存储和访问功能. 组织.检索.读写访问数据 大多数计算机系统都有文件系统 Google 也是一个文件系统 文件是具有符号名,由 ...

  2. 用Python获取计算机网卡信息

    目录 0. 前言 1. 测试环境及关键代码解释 1.1 测试环境 1.1.1 系统: 1.1.2 开发工具: 2. 模块介绍及演示 2.1 platform模块使用示例 2.2 netifaces模块 ...

  3. Python 第一式

    @Codewars Python练习 question ** Dashatize it ** Given a number, return a string with dash'-'marks bef ...

  4. shell习题第24题:杀进程

    [题目要求] 一台机器负载高,top查看到有很多sh的进程,然后top -c查看可以看到对应的进程命令是sh -c /bin/clear.sh 经分析后发现是因为该脚本执行时间太长,导致后续执行时,上 ...

  5. CSS之cursor用法

    cursor: url('~ROOT/shared/assets/image/vn-text-cursor-31-49.png') 22 22, nw-resize; 另外还有一个 cursor: g ...

  6. docker系列3--dockerd配置文件

    dockerd启动配置 docker通信方式选择 docker默认以sock文件方式提供接口,要开放tcp接口远程调用,需要修改配置文件: The Docker daemon can listen f ...

  7. 关于OI中的各种数学

    学到后面数学越来越多了,感觉好难啊,开个博客专门记录一下数学相关的东西 因为反正也没人看,所以主要还是给自己看的 一些符号: 数论函数的卷积:$\ast$,$ h = f \ast g$ 则 $h(n ...

  8. 怎样理解new命令的执行过程

    通过new命令生成一个实例对象经历了四个步骤: 1. 创建一个空对象, 作为将要返回的实例; 2. 将空对象的原型指向构造函数的prototype属性; 3. 将空对象赋值给构造函数的this; 4. ...

  9. 区间dp最长回文子序列问题

    状态转移方程如下: 当i > j时,dp[i,j]= 0. 当i = j时,dp[i,j] = 1. 当i < j并且str[i] == str[j]时,dp[i][j] = dp[i+1 ...

  10. js判断是哪种浏览器和阻止页面加载

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...