CF113D 高斯消元、dp
题目链接
https://codeforces.com/contest/113/problem/D
思路
\(k[i]=\frac{1-p[i]}{ru[i]}\)
f[i][j]表示经过i和j的次数的期望=概率
\(f[i][j]=p[i]*p[j]*f[i][j]\)
\(+k[i]*p[j]*f[u][j]\)
\(+p[i]*k[j]*f[i][v]\)
\(+k[i]*k[j]*f[u][v]\)
把右边的f[i][j]边移过去
可以用高斯消元解方程来进行dp
错误
好多细节没明白
比如f[s][s]=1
orzattack
代码
#include <iostream>
#include <vector>
#include <cmath>
#include <cstdio>
const int N=500;
using namespace std;
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int n,m,a,b,ru[N],id[N][N];
vector<int> G[N];
double k[N],p[N],f[N][N];
void init() {
f[id[a][b]][n*n+1]=-1;
for(int i=1;i<=n;++i) {
for(int j=1;j<=n;++j) {
int sdgzy=id[i][j];
--f[sdgzy][sdgzy];
if(i!=j) f[sdgzy][sdgzy]+=p[i]*p[j];
for(vector<int>::iterator x=G[i].begin();x!=G[i].end();++x) {
for(vector<int>::iterator y=G[j].begin();y!=G[j].end();++y) {
if(*x==*y) continue;
f[sdgzy][id[*x][*y]]+=k[*x]*k[*y];
}
}
for(vector<int>::iterator it=G[i].begin();it!=G[i].end();++it) {
if(*it==j) continue;
f[sdgzy][id[*it][j]]+=k[*it]*p[j];
}
for(vector<int>::iterator it=G[j].begin();it!=G[j].end();++it) {
if(*it==i) continue;
f[sdgzy][id[i][*it]]+=k[*it]*p[i];
}
}
}
}
double ans[N];
void gauss() {
int N=n*n;
for(int i=1;i<=N;++i) {
int mx=i;
for(int j=i+1;j<=N;++j)
if(f[j][i]>f[mx][i]&&f[j][i]!=0) mx=j;
if(mx!=i) swap(f[i],f[mx]);
for(int j=1;j<=N;++j) {
if(i==j) continue;
double p=f[j][i]/f[i][i];
for(int k=i;k<=N+1;k++) {
f[j][k]-=f[i][k]*p;
}
}
}
for(int i=1;i<=N;++i) f[i][i]=f[i][N+1]/f[i][i];
}
int main() {
n=read(),m=read();
a=read(),b=read();
for(int i=1;i<=m;++i) {
int x=read(),y=read();
G[x].push_back(y);
G[y].push_back(x);
ru[x]++;
ru[y]++;
}
for(int i=1;i<=n;++i) scanf("%lf",&p[i]);
for(int i=1;i<=n;++i) k[i]=(1.0-p[i])/ru[i];
for(int i=1,cnt=0;i<=n;++i)
for(int j=1;j<=n;++j)
id[i][j]=++cnt;
init();
gauss();
for(int i=1;i<=n;++i) printf("%.10lf ",f[id[i][i]][id[i][i]]);
return 0;
}
CF113D 高斯消元、dp的更多相关文章
- UVALive - 3490 Generator (AC自动机+高斯消元dp)
初始有一个空串s,从前n个大写字母中不断随机取出一个字母添加到s的结尾,出现模式串t时停止,求停止时s的长度期望. 这道题解法不唯一,比较无脑的方法是对模式串t建一个单串AC自动机,设u为自动机上的一 ...
- bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】
首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...
- bzoj 3143 [Hnoi2013]游走【高斯消元+dp】
参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
- 2014多校第一场J题 || HDU 4870 Rating(DP || 高斯消元)
题目链接 题意 :小女孩注册了两个比赛的帐号,初始分值都为0,每做一次比赛如果排名在前两百名,rating涨50,否则降100,告诉你她每次比赛在前两百名的概率p,如果她每次做题都用两个账号中分数低的 ...
- 【高斯消元】兼 【期望dp】例题
[总览] 高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解. 如:$3X_1 + 2X_2 + 1X_3 = 3$ $ ...
- BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]
3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- BZOJ 3270: 博物馆 [概率DP 高斯消元]
http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...
随机推荐
- windows中查看端口占用情况
说几个命令, netstat 用于查看进程端口占用情况,用法可以使用netstat -h 查看 tasklist 列出当前进程,有进程号 findstr 用于过滤字符串 大致过程就是: 1. 使用 n ...
- Hello py
https://www.cnblogs.com/AdaminXie/p/8339863.html https://www.cnblogs.com/-clq/p/8340515.html https:/ ...
- man查看帮助命令
man -h/-help 1.在man命令帮助信息的界面中,所包含的常用操作按键及其用途 按键 用处 空格键 向下翻一页 PaGe down 向下翻一页 PaGe up 向上翻一页 home 直接前往 ...
- Day9 面向对象高级
一.方法 方法包括:普通方法.静态方法和类方法,三种方法在内存中都归属于类,区别在于调用方式不同. 普通方法:由对象调用:至少一个self参数:执行普通方法时,自动将调用该方法的对象赋值给self: ...
- Vue系列之 => 通过vue-resource发起ajax请求
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 准备MyBatis
MyBatis下载:https://github.com/mybatis/mybatis-3/releases MyBatis文件目录: 中文参考文档:http://www.mybatis.org/m ...
- EasyUI创建DataGrid及冻结列的两种方式
第一种方式:通过HTML标签创建数据表格控件 <table class="easyui-datagrid" title="基本数据表格" style ...
- codeforces 984B Minesweeper
题意: 给出一个矩阵,如果一个格子是数字,那么与这个格子相邻的格子中有炸弹的数量必须等于这个格子中的数字: 如果一个格子是空地,那么这个格子的所有相邻的格子中就不能有炸弹. 判断这个矩阵是否合法. 思 ...
- spring boot: ConfigurationProperties
读取配置信息 1.5 之前 @Component @ConfigurationProperties(prefix = "user", locations= {"class ...
- UVA 11100 The Trip, 2007 (贪心)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...