一道条件非常多的差分约束

把\( a < b \)转化为\( a-b \le -1\)就可做了

\( a>b \)的情况同理

若有负环则无解输出-1

注意本题中要求每个人都有糖果

所以假设一个源点\( d_{0} \),使\( d_{i}-d_{0} \ge 1 \  , \ (1 \le i \le n) \)

另外,本题要求得是最小值

\( x_{i}-x_{j} \le a_{k} \)的形式求出的是最大值

要转化成 \( x_{j}-x_{i} \ge a_{k} \)的形式求解最小值

每个人的最小值即为\( dis_{i} \),所以求和

因为和是负数,所以输出-ans

ans会爆int

#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int MAXN = ;
const int MAXM = ;
int cnt=,u[MAXM],v[MAXM],w[MAXM],first[MAXN],next[MAXM];
bool vis[MAXN];
int inq[MAXN],dis[MAXN],f[MAXN];
int n,k;
void addedge(int ux,int vx,int wx){
++cnt;
u[cnt]=ux;
v[cnt]=vx;
w[cnt]=wx;
next[cnt]=first[ux];
first[ux]=cnt;
}
bool spfa(int s){
queue<int> q;
for(int i=;i<=n;i++)
dis[i]=0x3f3f3f3f;
q.push(s);
dis[s]=;
inq[s]=;
vis[s]=;
f[s]=;
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=;
f[u]=;
for(int i=first[u];i;i=next[i]){
if(w[i]+dis[u]<dis[v[i]]){
dis[v[i]]=w[i]+dis[u];
if(!vis[v[i]]){
vis[v[i]]=;
inq[v[i]]++;
q.push(v[i]);
if(inq[v[i]]>=n)
return false;
}
}
}
}
return true;
}
int main(){
scanf("%d %d",&n,&k);
int x,a,b;
for(int i=;i<=k;i++){
scanf("%d",&x);
if(x==){
scanf("%d %d",&a,&b);
addedge(a,b,);
addedge(b,a,);
}
else if(x==){
scanf("%d %d",&a,&b);
addedge(a,b,-);
if(a==b){
printf("-1");
return ;
}
}
else if(x==){
scanf("%d %d",&a,&b);
addedge(b,a,);
}
else if(x==){
scanf("%d %d",&a,&b);
addedge(b,a,-);
if(a==b){
printf("-1");
return ;
}
}
else{
scanf("%d %d",&a,&b);
addedge(a,b,);
}
}
for(int i=n;i>=;i--)
addedge(,i,-);
if(!spfa()){
printf("-1");
return ;
}
long long ans=;
for(int i=;i<=n;i++)
ans+=-dis[i];
printf("%lld",ans);
return ;
}

题解——洛谷P3275 [SCOI2011]糖果的更多相关文章

  1. 洛谷——P3275 [SCOI2011]糖果

    P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...

  2. 洛谷P3275 [SCOI2011]糖果(差分约束,最长路,Tarjan,拓扑排序)

    洛谷题目传送门 差分约束模板题,等于双向连0边,小于等于单向连0边,小于单向连1边,我太蒻了,总喜欢正边权跑最长路...... 看遍了讨论版,我是真的不敢再入复杂度有点超级伪的SPFA的坑了 为了保证 ...

  3. 洛谷P3275 [SCOI2011]糖果 题解

    题目链接: https://www.luogu.org/problemnew/show/P3275 分析: 本题就是一个裸的差分约束. 核心: x=1x=1x=1时,a=b,a−>b,b−> ...

  4. 洛谷P3275 [SCOI2011]糖果 [差分约束系统]

    题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...

  5. 【POJ 3159】Candies&&洛谷P3275 [SCOI2011]糖果

    来补一下自己很久以前那个很蒟蒻很蒟蒻的自己没有学懂的知识 差分约束,说白了就是利用我们在求最短路的一个\(relax\)操作时的判断的原理 \[dis[v]>dis[u]+disj(u,v)\] ...

  6. 洛谷 P3275 [SCOI2011]糖果

    题目链接 题解 差分约束 学过的应该都会做 不会的自行百度,这里不多讲 opt=1 连一条长度为0的双向边 opt=2 (u->v) \(len=-1\) opt=3 (v->u) \(l ...

  7. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  8. 洛谷P3275 [SCOI2011]糖果

    差分约束大坑题 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  9. 洛谷P3275 [SCOI2011]糖果_差分约束_判负环

    Code: #include<cstdio> #include<queue> #include<algorithm> using namespace std; co ...

随机推荐

  1. Oracle10g 连接 sqlserver 在server2008r2 中连接 iis7 .net4.0

    一.做好了连接但是到了64位的server2008r2上就是不行,报错dns上不匹配.最后找到原因了 自己到c盘里面找32位的odbc管理工具然后建立连接,然后一切正常. 二.iis7 .net4.0 ...

  2. Yii2 数据缓存/片段缓存/页面缓存/Http缓存

  3. sitecore系统教程之媒体库

    您可以管理媒体库中的所有媒体项目,例如要嵌入网页的图像或供访问者下载的图像.媒体库包含所有媒体项目,例如图像,文档,视频和音频文件. 在媒体库中,您可以: 将所有媒体文件保存在一个位置,并将其组织在与 ...

  4. uva 12222 Mountain Road

    题意: 有一个单行道,两个方向都有车在等待.给出每个车的方向以及到达的时间以及走完这段路所需要的时间. 为了防止车祸,同向两车通过任一点的时间间隔不得小于10s. 求最后一辆车离开时刻的最小值. 思路 ...

  5. rt.jar sun package

          安装完JDK后,会在%JAVA_HOME% /jdk文件夹下生成一个src.zip,此文件夹对应rt.jar中的java源码,但细心研究后发现rt.jar中sun包下的文件不存在,也就是说 ...

  6. spring部分注解

    @Controller @SpringBootApplication @Configuration @ComponentScan(basePackages={"first",&qu ...

  7. Python词云分析

    import jieba from matplotlib import pyplot as plt from wordcloud import WordCloud from PIL import Im ...

  8. Icarscan VCI is definitely the update variation of Start iDiag

    Start iCarScan is alternative of Super X431 iDiag, it’ll make your Android smartphone or tablet righ ...

  9. css实现16:9的图片比例

    摘自:https://www.cnblogs.com/caizhenbo/p/css.html 需求: 最近产品要求不管原图的大小是多少,宽度一定,高度要自自适应为16:9. 分析: 对于正常的固定好 ...

  10. php中session同ip不同端口的多个网站session冲突的解决办法

    在局域网内使用IP加端口的访问方式搭了两个相同程序的站,结果发现用户在一个站下登录后,在另一个站也同时登录了,在一个退出后,另一个站也同时退出了.看了下程序发现两个站都是使用纯session方式记录登 ...