题解——洛谷P3275 [SCOI2011]糖果
一道条件非常多的差分约束
把\( a < b \)转化为\( a-b \le -1\)就可做了
\( a>b \)的情况同理
若有负环则无解输出-1
注意本题中要求每个人都有糖果
所以假设一个源点\( d_{0} \),使\( d_{i}-d_{0} \ge 1 \ , \ (1 \le i \le n) \)
另外,本题要求得是最小值
\( x_{i}-x_{j} \le a_{k} \)的形式求出的是最大值
要转化成 \( x_{j}-x_{i} \ge a_{k} \)的形式求解最小值
每个人的最小值即为\( dis_{i} \),所以求和
因为和是负数,所以输出-ans
ans会爆int
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int MAXN = ;
const int MAXM = ;
int cnt=,u[MAXM],v[MAXM],w[MAXM],first[MAXN],next[MAXM];
bool vis[MAXN];
int inq[MAXN],dis[MAXN],f[MAXN];
int n,k;
void addedge(int ux,int vx,int wx){
++cnt;
u[cnt]=ux;
v[cnt]=vx;
w[cnt]=wx;
next[cnt]=first[ux];
first[ux]=cnt;
}
bool spfa(int s){
queue<int> q;
for(int i=;i<=n;i++)
dis[i]=0x3f3f3f3f;
q.push(s);
dis[s]=;
inq[s]=;
vis[s]=;
f[s]=;
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=;
f[u]=;
for(int i=first[u];i;i=next[i]){
if(w[i]+dis[u]<dis[v[i]]){
dis[v[i]]=w[i]+dis[u];
if(!vis[v[i]]){
vis[v[i]]=;
inq[v[i]]++;
q.push(v[i]);
if(inq[v[i]]>=n)
return false;
}
}
}
}
return true;
}
int main(){
scanf("%d %d",&n,&k);
int x,a,b;
for(int i=;i<=k;i++){
scanf("%d",&x);
if(x==){
scanf("%d %d",&a,&b);
addedge(a,b,);
addedge(b,a,);
}
else if(x==){
scanf("%d %d",&a,&b);
addedge(a,b,-);
if(a==b){
printf("-1");
return ;
}
}
else if(x==){
scanf("%d %d",&a,&b);
addedge(b,a,);
}
else if(x==){
scanf("%d %d",&a,&b);
addedge(b,a,-);
if(a==b){
printf("-1");
return ;
}
}
else{
scanf("%d %d",&a,&b);
addedge(a,b,);
}
}
for(int i=n;i>=;i--)
addedge(,i,-);
if(!spfa()){
printf("-1");
return ;
}
long long ans=;
for(int i=;i<=n;i++)
ans+=-dis[i];
printf("%lld",ans);
return ;
}
题解——洛谷P3275 [SCOI2011]糖果的更多相关文章
- 洛谷——P3275 [SCOI2011]糖果
P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...
- 洛谷P3275 [SCOI2011]糖果(差分约束,最长路,Tarjan,拓扑排序)
洛谷题目传送门 差分约束模板题,等于双向连0边,小于等于单向连0边,小于单向连1边,我太蒻了,总喜欢正边权跑最长路...... 看遍了讨论版,我是真的不敢再入复杂度有点超级伪的SPFA的坑了 为了保证 ...
- 洛谷P3275 [SCOI2011]糖果 题解
题目链接: https://www.luogu.org/problemnew/show/P3275 分析: 本题就是一个裸的差分约束. 核心: x=1x=1x=1时,a=b,a−>b,b−> ...
- 洛谷P3275 [SCOI2011]糖果 [差分约束系统]
题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...
- 【POJ 3159】Candies&&洛谷P3275 [SCOI2011]糖果
来补一下自己很久以前那个很蒟蒻很蒟蒻的自己没有学懂的知识 差分约束,说白了就是利用我们在求最短路的一个\(relax\)操作时的判断的原理 \[dis[v]>dis[u]+disj(u,v)\] ...
- 洛谷 P3275 [SCOI2011]糖果
题目链接 题解 差分约束 学过的应该都会做 不会的自行百度,这里不多讲 opt=1 连一条长度为0的双向边 opt=2 (u->v) \(len=-1\) opt=3 (v->u) \(l ...
- 洛谷P3275 [SCOI2011]糖果(差分约束)
题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...
- 洛谷P3275 [SCOI2011]糖果
差分约束大坑题 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...
- 洛谷P3275 [SCOI2011]糖果_差分约束_判负环
Code: #include<cstdio> #include<queue> #include<algorithm> using namespace std; co ...
随机推荐
- Oracle10g 连接 sqlserver 在server2008r2 中连接 iis7 .net4.0
一.做好了连接但是到了64位的server2008r2上就是不行,报错dns上不匹配.最后找到原因了 自己到c盘里面找32位的odbc管理工具然后建立连接,然后一切正常. 二.iis7 .net4.0 ...
- Yii2 数据缓存/片段缓存/页面缓存/Http缓存
- sitecore系统教程之媒体库
您可以管理媒体库中的所有媒体项目,例如要嵌入网页的图像或供访问者下载的图像.媒体库包含所有媒体项目,例如图像,文档,视频和音频文件. 在媒体库中,您可以: 将所有媒体文件保存在一个位置,并将其组织在与 ...
- uva 12222 Mountain Road
题意: 有一个单行道,两个方向都有车在等待.给出每个车的方向以及到达的时间以及走完这段路所需要的时间. 为了防止车祸,同向两车通过任一点的时间间隔不得小于10s. 求最后一辆车离开时刻的最小值. 思路 ...
- rt.jar sun package
安装完JDK后,会在%JAVA_HOME% /jdk文件夹下生成一个src.zip,此文件夹对应rt.jar中的java源码,但细心研究后发现rt.jar中sun包下的文件不存在,也就是说 ...
- spring部分注解
@Controller @SpringBootApplication @Configuration @ComponentScan(basePackages={"first",&qu ...
- Python词云分析
import jieba from matplotlib import pyplot as plt from wordcloud import WordCloud from PIL import Im ...
- Icarscan VCI is definitely the update variation of Start iDiag
Start iCarScan is alternative of Super X431 iDiag, it’ll make your Android smartphone or tablet righ ...
- css实现16:9的图片比例
摘自:https://www.cnblogs.com/caizhenbo/p/css.html 需求: 最近产品要求不管原图的大小是多少,宽度一定,高度要自自适应为16:9. 分析: 对于正常的固定好 ...
- php中session同ip不同端口的多个网站session冲突的解决办法
在局域网内使用IP加端口的访问方式搭了两个相同程序的站,结果发现用户在一个站下登录后,在另一个站也同时登录了,在一个退出后,另一个站也同时退出了.看了下程序发现两个站都是使用纯session方式记录登 ...