bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录
题目链接
题解
\(n^2\) 的dp长这样
\(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\)
设\(w_{ij} = (sum_i - sum_j - 1 - L)^P\)
那么化成1D1D的标准形式
$ f_i = min(f_j + w_{i,j}) $
发现w满足四边形不等式
证明可以看这里
https://www.byvoid.com/zhs/blog/noi-2009-poet
因此状态转移方程具有单调性
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define gc getchar()
#define pc putchar
#define LD long double
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9' )c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f ;
}
void print(LL x) {
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
const int maxn = 100007;
char s[maxn][32];
int n,L,p;
inline LD fstpow(LD x,int k) {
LD ret = 1;
for(;k;k >>= 1,x = x * x) if(k & 1) ret *= x;
return ret;
}
LD f[maxn];
int sum[maxn];
LD calc(int j,int i) {
return f[j] + fstpow(std::abs(sum[i] - sum[j] - L),p);
}
int find(int x,int y) {
int l = x,r = n,ret = 0;
while(l <= r) {
int mid = l + r >> 1;
if(calc(x,mid) >= calc(y,mid)) r = mid - 1;
else l = mid + 1;
}
return l;
}
int q[maxn],c[maxn];
int pre[maxn];
void solve() {
n = read(),L = read() + 1,p = read();
for(int i = 1;i <= n;++ i) {
scanf("%s",s[i] + 1);
sum[i] = sum[i - 1] + strlen(s[i] + 1) + 1;
}
int h = 1,t = 1;
q[h] = 0;
for(int i = 1;i <= n;++ i) {
while(h < t && c[h] <= i) ++ h;
f[i] = calc(q[h],i); pre[i] = q[h];
while(h < t && c[t - 1] >= find(q[t],i)) t --;
c[t] = find(q[t],i); q[++ t] = i;
}
if(f[n] > 1e18) {
puts("Too hard to arrange\n--------------------");
return;
}
printf("%.0Lf\n", f[n]);
puts("--------------------");
}
int main() {
int T = read();
for(int i = 1; i <= T; ++ i) {
solve();
}
return 0;
}
bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)的更多相关文章
- BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- BZOJ_1563_[NOI2009]诗人小G_决策单调性
BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)
设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
随机推荐
- Dubbo——基于Zookeeper服务框架搭建及案例演示
一.了解SOA微服务架构 在大规模服务化之前,应用可能只是通过RMI或Hessian等工具,简单的暴露和引用远程服务,通过配置服务的URL地址进行调用,通过F5等硬件进行负载均衡. (1) 当服务越来 ...
- 嵌入式系统C编程之错误处理
前言 本文主要总结嵌入式系统C语言编程中,主要的错误处理方式.文中涉及的代码运行环境如下: 一 错误概念 1.1 错误分类 从严重性而言,程序错误可分为致命性和非致命性两类.对于致命性错误,无法执行 ...
- springboot系列一、springboot产生背景及介绍
一.为什么用Springboot 长期以来 Java 的开发一直让人所诟病: ·Java 项目开发复杂度极其高: · Java 项目的维护非常困难: · 在云时代如何实现项目的快速部署以及快速启动: ...
- CentOS 6.5环境实现corosync+pacemaker实现DRBD高可用
DRBD (Distributed Replicated Block Device)分布式复制块设备,它是 Linux 平台上的分散式储存系统,通常用于高可用性(high availability, ...
- K最近邻kNN-学习笔记
# -*- coding: utf-8 -*- """ Created on Thu Jan 24 09:34:32 2019 1. 翼尾花数据 2. 用 KNeighb ...
- linux unzip 中文乱码解决方法
引自:https://blog.csdn.net/abyjun/article/details/48344379 unzip -O CP936 xxx.zip (用GBK, GB18030也可以)
- Spring Boot学习笔记 - 整合Swagger2自动生成RESTful API文档
1.添加Swagger2依赖 在pom.xml中加入Swagger2的依赖 <!--swagger2--> <dependency> <groupId>io.spr ...
- Android app 在线更新那点事儿(适配Android6.0、7.0、8.0)
一.前言 app在线更新是一个比较常见需求,新版本发布时,用户进入我们的app,就会弹出更新提示框,第一时间更新新版本app.在线更新分为以下几个步骤: 1, 通过接口获取线上版本号,versionC ...
- 用Kotlin破解Android版微信小游戏-跳一跳
前言 微信又更新了,从更新日志上来看,似乎只是一次不痛不痒的小更新.不过,很快就有人发现,原来微信这次搞了个大动作——在小程序里加入了小游戏.今天也是朋友圈被刷爆的缘故. 看到网上 有人弄了一个破解版 ...
- hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询
点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...