Posted on Friday, October 11, 2013

.Net has three low-level mechanisms to run code in parallel: Thread, ThreadPool, and Task. These three mechanism serve different purposes.

Thread

Thread represents an actual OS-level thread, with its own stack and kernel resources. (technically, a CLR implementation could use fibers instead, but no existing CLR does this) Thread allows the highest degree of control; you can Abort() or Suspend() or Resume() a thread (though this is a very bad idea), you can observe its state, and you can set thread-level properties like the stack size, apartment state, or culture.

The problem with Thread is that OS threads are costly. Each thread you have consumes a non-trivial amount of memory for its stack, and adds additional CPU overhead as the processor context-switch between threads. Instead, it is better to have a small pool of threads execute your code as work becomes available.

There are times when there is no alternative Thread. If you need to specify the name (for debugging purposes) or the apartment state (to show a UI), you must create your own Thread (note that having multiple UI threads is generally a bad idea). Also, if you want to maintain an object that is owned by a single thread and can only be used by that thread, it is much easier to explicitly create a Thread instance for it so you can easily check whether code trying to use it is running on the correct thread.

ThreadPool

ThreadPool is a wrapper around a pool of threads maintained by the CLR. ThreadPool gives you no control at all; you can submit work to execute at some point, and you can control the size of the pool, but you can't set anything else. You can't even tell when the pool will start running the work you submit to it.

Using ThreadPool avoids the overhead of creating too many threads. However, if you submit too many long-running tasks to the threadpool, it can get full, and later work that you submit can end up waiting for the earlier long-running items to finish. In addition, the ThreadPool offers no way to find out when a work item has been completed (unlike Thread.Join()), nor a way to get the result. Therefore, ThreadPool is best used for short operations where the caller does not need the result.

Task

Finally, the Task class from the Task Parallel Library offers the best of both worlds. Like the ThreadPool, a task does not create its own OS thread. Instead, tasks are executed by a TaskScheduler; the default scheduler simply runs on the ThreadPool.

Unlike the ThreadPool, Task also allows you to find out when it finishes, and (via the generic Task<T>) to return a result. You can call ContinueWith() on an existing Task to make it run more code once the task finishes (if it's already finished, it will run the callback immediately). If the task is generic, ContinueWith() will pass you the task's result, allowing you to run more code that uses it.

You can also synchronously wait for a task to finish by calling Wait() (or, for a generic task, by getting the Result property). Like Thread.Join(), this will block the calling thread until the task finishes. Synchronously waiting for a task is usually bad idea; it prevents the calling thread from doing any other work, and can also lead to deadlocks if the task ends up waiting (even asynchronously) for the current thread.

Since tasks still run on the ThreadPool, they should not be used for long-running operations, since they can still fill up the thread pool and block new work. Instead, Taskprovides a LongRunning option, which will tell the TaskScheduler to spin up a new thread rather than running on the ThreadPool.

All newer high-level concurrency APIs, including the Parallel.For*() methods, PLINQ, C# 5 await, and modern async methods in the BCL, are all built on Task.

Conclusion

The bottom line is that Task is almost always the best option; it provides a much more powerful API and avoids wasting OS threads.

The only reasons to explicitly create your own Threads in modern code are setting per-thread options, or maintaining a persistent thread that needs to maintain its own identity.

http://blog.slaks.net/2013-10-11/threads-vs-tasks/

Threads vs. Tasks的更多相关文章

  1. java多线程系类:JUC线程池:03之线程池原理(二)(转)

    概要 在前面一章"Java多线程系列--"JUC线程池"02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包 ...

  2. Understanding the Internal Message Buffers of Storm

    Understanding the Internal Message Buffers of Storm Jun 21st, 2013 Table of Contents Internal messag ...

  3. 进程物理内存远大于Xmx的问题分析

    问题描述 最近经常被问到一个问题,”为什么我们系统进程占用的物理内存(Res/Rss)会远远大于设置的Xmx值”,比如Xmx设置1.7G,但是top看到的Res的值却达到了3.0G,随着进程的运行,R ...

  4. Java多线程系列--“JUC线程池”03之 线程池原理(二)

    概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...

  5. ThreadPoolExecutor机制探索-我们到底能走多远系列(41)

    我们到底能走多远系列(41) 扯淡: 这一年过的不匆忙,也颇多感受,成长的路上难免弯路,这个世界上没人关心你有没有变强,只有自己时刻提醒自己,不要忘记最初出发的原因. 其实这个世界上比我们聪明的人无数 ...

  6. 怎么通过activity里面的一个按钮跳转到另一个fragment(android FragmentTransaction.replace的用法介绍)

    即:android FragmentTransaction.replace的用法介绍 Fragment的生命周期和它的宿主Activity密切相关,几乎和宿主Activity的生命周期一致,他们之间最 ...

  7. OpenMP初步(英文)

    Beginning OpenMP OpenMP provides a straight-forward interface to write software that can use multipl ...

  8. ThreadPoolExecutor 分析

    一.从用法入手 Creates a thread pool that creates new threads as needed, but will reuse previously construc ...

  9. Threading in C#

    http://www.albahari.com/threading/ PART 1: GETTING STARTED Introduction and Concepts C# supports par ...

随机推荐

  1. loj#2665. 「NOI2013」树的计数

    目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...

  2. Python3练习题系列(02)

    题目: 思考循环结构,看看它是怎样运行的,对我们认识程序有何益处. 知识点: list, for-loop, range 练习代码: 练习1 the_count = [1, 2, 3, 4, 5] # ...

  3. mogodb排序

    db.getClloection('user').find().sort({'age':-1}).pretty() 2.自然排序,也就是插入的先后顺序 db.getClloection('user') ...

  4. 20172302 《Java软件结构与数据结构》第七周学习总结

    2018年学习总结博客总目录:第一周 第二周 第三周 第四周 第五周 第六周 第七周 教材学习内容总结 第11章 二叉查找树 1.二叉查找树是一种含有附加属性的二叉树,该属性即其左孩子小于父节点,而父 ...

  5. 关于Android studio团队协同开发连接到已有项目

    当团队中已经有人创建好项目的时候,队员想把自己的as与码云上项目相互连接时,有两种方法: 方法一: 进入as初始页面: 分别点击:check out project from Version cont ...

  6. ORB-SLAM2(一)----使用Eclipse进行开发

    1.导入项目 准备工作 1, first we should make sure the compile with build.sh under ORB_SLAM2-master is OK. 2, ...

  7. Windows DIB文件操作具体解释-4.使用DIB Section

    前面讲了为了提高DIB的显示性能和效率,我们将DIB转换成DDB.可是这又遇到一个问题.假设我想操作DIB的数据的话,显然是不能使用DDB:一是由于DIB转DDB时发生了颜色转换.再就是DDB无法直接 ...

  8. 【.NET线程--进阶(一)】--线程方法详解

    上篇博客从线程的基本概况开始着重讨论了线程,进程,程序之间的区别,然后讨论了线程操作的几个类,并通过实例来说明了线程的创建方法.本篇博客将会带大家更深入的了解线程,介绍线程的基本方法,并通过一个Dem ...

  9. Python中多进程的使用

    进程:程序的一次执行(程序载入内存,系统分配资源运行).每个进程有自己的内存空间,数据栈等,进程之间可以进行通讯,但是不能共享信息. 线程:所有的线程运行在同一个进程中,共享相同的运行环境.每个独立的 ...

  10. SharedPreferences 原理 源码 进程间通信 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...