斐波那契博弈(Fibonacci Nim)
问题:
有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下:
1)先手不能在第一次把所有的石子取完,至少取1颗;
2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍。
约定取走最后一个石子的人为赢家,求必败态。
结论:当n为Fibonacci数的时候,先手必败。
f[i]:1,2,3,5,8,13,21,34,55,89……
证明:
数学归纳法:
为了方便,我们将n记为f[i]。
1、当i=2时,先手只能取1颗,显然必败,结论成立。
2、假设当i<=k时,结论成立。
则当i=k+1时,f[i] = f[k]+f[k-1]。
则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。
(一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])
对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。
如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。
我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,对两值作差后不难得出,后者大。
所以我们得到,x<1/2*f[k]。
即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。
即i=k+1时,结论依然成立。
那么,当n不是Fibonacci数的时候,先手必胜的情况又是怎样的呢?
这里需要借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。
关于这个定理的证明,感兴趣的同学可以在网上搜索相关资料,这里不再详述。
分解的时候,要取尽量大的Fibonacci数。
比如分解85:85在55和89之间,于是可以写成85=55+30,然后继续分解30,30在21和34之间,所以可以写成30=21+9,
依此类推,最后分解成85=55+21+8+1。
则我们可以把n写成 n = f[a1]+f[a2]+……+f[ap]。(a1>a2>……>ap)
我们令先手先取完f[ap],即最小的这一堆。由于各个f之间不连续,则a(p-1) > ap + 1,则有f[a(p-1)] > 2*f[ap]。即后手只能取f[a(p-1)]这一堆�%@C�且不能一次取完。
此时后手相当于面临这个子游戏(只有f[a(p-1)]这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。
同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。
【转载自:http://blog.csdn.net/dgq8211/article/details/7602807】
斐波那契博弈(Fibonacci Nim)的更多相关文章
- 一种斐波那契博弈(Fibonacci Nim)
事实上我也不知道这算是哪个类型的博弈 是在复习$NOIP$初赛的时候看到的一个挺有趣的博弈 所以就写出来分享一下 $upd \ on \ 2018.10.12$忽然发现这个其实就是$Fibonacci ...
- 博弈论基础知识: 巴什博奕+斐波那契博弈+威佐夫博奕+尼姆博弈(及Staircase)(转)
(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1 ...
- 51nod Bash游戏(V1,V2,V3,V4(斐波那契博弈))
Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得 ...
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
- 简单易懂的博弈论讲解(巴什博弈、尼姆博弈、威佐夫博弈、斐波那契博弈、SG定理)
博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时 ...
- 51Nod 1070 Bash游戏 V4(斐波那契博弈)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csd ...
- hdu2516斐波那契博弈
刚开始想用sg函数做,想了半天没一点思路啊. 原来这是一个新题型,斐波那契博弈 斐波那契博弈模型:有一堆个数为 n 的石子,游戏双方轮流取石子,满足:1. 先手不能在第一次把所有的石子取完:2. 之后 ...
- {HDU}{2516}{取石子游戏}{斐波那契博弈}
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...
- 第2章 数字之魅——斐波那契(Fibonacci)数列
斐波那契(Fibonacci)数列 问题描述 递归算法: package chapter2shuzizhimei.fibonacci; /** * Fibonacci数列递归求解 * @author ...
- HDU 2516 取石子游戏 斐波纳契博弈
斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...
随机推荐
- 一个封装较好的删除方法(Delete)
前台的引用 @Html.ActionLink(“删除字样”,“后台的删除方法”,new{绑定id},new{@style="样式"});方法,如何要独立使用的话,一般还要使用到相应 ...
- 2013 Multi-University Training Contest 10
HDU-4698 Counting 题意:给定一个二维平面,其中x取值为1-N,y取值为1-M,现给定K个点,问至少包括K个点中的一个的满足要求的<Xmin, Xmax, Ymin, Ymax& ...
- chubu
python解释型语言,不需要编译成机器认可的二进制码,而是直接从源代码运行程序. python是基于c语言开发的. python很容易嵌入到其他语言. 中文注释,必须在前边加上注释说明 : #_*_ ...
- javascript练习----复选框全选,全不选,反选
第一种方式: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- win10系统更新补丁时进度条一直卡在0%不动的解决方案
为了能够让win10系统更加安全稳定,很多用户都会时不时为自己的电脑安装补丁.不过,部分用户在为win10系统更新补丁时,却会遇到进度条一直卡在0%不动的问题.这该怎么办呢?下面,小编就告诉大家解决该 ...
- [转载] zookeeper faq
Zookeeper FAQ1. 如何处理CONNECTION_LOSS?在Zookeeper中,服务器和客户端之间维持一个长连接,CONNECTION_LOSS意味着这个连接断开了.客户端API返回C ...
- JavaScript的事件对象_键盘事件
用户在使用键盘时会触发键盘事件.“DOM2 级事件”最初规定了键盘事件,结果又删除了相应的内容.最终还是使用最初的键盘事件,不过 IE9 已经率先支持“DOM3”级键盘事件. 一.键码 在发生 key ...
- java中的堆内存和栈内存
Java把内存分成两种: 一种叫做栈内存 一种叫做堆内存 栈内存 : 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个变量时,java就在栈中为这个变 ...
- 在Linux或者Unix下打开,每一行都会出多出^M这样的字符
Windows上写好的文件,在Linux或者Unix下打开,每一行都会出多出^M这样的字符,这是因为Windows与*nix的换行符不同所致,我们看看文件格式有什么不同. 在Linux下查看文件格式: ...
- 深入理解PHP原理之变量分离/引用
19 Sep 08 深入理解PHP原理之变量分离/引用(Variables Separation) 作者: Laruence( ) 本文地址: http://www.laruence.com/20 ...