http://poj.org/problem?id=1160 (题目链接)

题意

  按照递增顺序给出一条直线上坐标互不相同的n个村庄,要求从中选择p个村庄建立邮局,每个村庄使用离它最近的那个邮局,使得所有村庄到各自所使用的邮局的距离总和最小。

Solution

  经典dp方程:

  其中f[i][j]表示前j个村庄,放置i个邮局的最优方案。w[i][j]表示在i到j的村庄放置一个邮局,i~j的村庄到这个邮局的总距离。考虑如何求解w[i][j],因为只放置一个邮局,所以一定是放在最中间的那个点上,所以邮局两侧的点到邮局的的距离之和就为它们两点之间的距离,然后从两边向中间扫描一遍更新答案就可以了。于是我们就得到了O(n*n*n*p)的做法。

  考虑四边形不等式优化。像dp方程长成形如“合并石子”那个样子的,很多都可以用四边形不等式优化。然而通过四边形不等式证明决策单调性实在是繁琐爆炸,看了一晚上感觉就是不停的放缩不等式强行证明。。其实当你感觉可以四边形不等式优化的时候,最有效的做法就是写个普通dp再写个优化后的dp进行对拍(→_→反正dp短)。

  于是经过四边形不等式优化后它的决策就神奇的具有单调性了→_→。设s[i][j]表示f[i][j]的决策方案。那么s[i-1][j]<=s[i][j]<=s[i][j+1]。所以我们枚举k的时候就不用从头枚到尾了,直接从s[i-1][j]枚到s[i][j+1]就可以了,所以复杂度就变成了O(n*n*p)。也许还有论文所说的O(n*p)的做法,就是把w[i][j]O(n)预处理,然而这如何O(n)预处理呢,我只会n²。。。

代码

// poj1160
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define MOD 998244353
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
int f,x=0;char ch=getchar();
while (ch<='0' || ch>'9') {if (ch=='-') f=-1;else f=1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=500;
int f[maxn][maxn],sum[maxn][maxn],s[maxn][maxn],a[maxn];
int n,p; int dis(int i,int j) {
if (i>=j) return 0;
if (sum[i][j]!=0) return sum[i][j];
int x=i,y=j;
while (x<y) sum[i][j]+=a[y--]-a[x++];
return sum[i][j];
}
int main() {
while (scanf("%d%d",&n,&p)!=EOF) {
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
memset(f,0,sizeof(f));
memset(sum,0,sizeof(sum));
for (int i=1;i<=n;i++) f[1][i]=dis(1,i),s[i][i]=i-1;
for (int i=2;i<=p;i++) {
s[i][n+1]=n-1;
for (int j=n;j>=i;j--) {
f[i][j]=inf;
for (int k=s[i-1][j];k<=s[i][j+1];k++)
if (f[i-1][k]+dis(k+1,j)<f[i][j])
f[i][j]=f[i-1][k]+dis(k+1,j),s[i][j]=k;
}
}
printf("%d\n",f[p][n]);
}
return 0;
}

  

【poj1160】 Post Office的更多相关文章

  1. 题解【POJ1160】Post Office

    [POJ1160]Post Office Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22362 Accepted: 1208 ...

  2. 【原创】利用Office宏实现powershell payload远控

    本文将演示使用Veil-Evasion生成远控所需要的payload以及监听器,然后使用MacroShop生成payload 相关的VBA代码,最后演示将VBA代码写入.doc文本文档的宏中. 环境: ...

  3. 【办公】Microsoft Office 2016 专业增强版下载及永久激活-亲测分享

    Win7 x64,安装 Office 2016. 1. 下载 Office 2016,用迅雷网上下载飞快.(这里分享我的下载链接,2.39G用迅雷分分钟就下好了) 2. 按 此博客 ,安装激活工具. ...

  4. 【POJ】【1160】Post Office

    DP/四边形不等式 邮局,经典的四边形不等式例题! 关于四边形不等式的学习请看 赵爽论文<动态规划加速原理之四边形不等式> 题目总结&题解:http://blog.csdn.net ...

  5. 【转载】Windows/Office“神key的来源”(附win8神key)

        凡是没有经过微软授权的渠道激活Windows/Office的全部是"D版"!但由于密钥激活更方便快捷,因此很受欢迎.从百度博客到现在,很多网友询问:"神key&q ...

  6. 【HHHOJ】NOIP模拟赛 捌 解题报告

    点此进入比赛 得分: \(30+30+70=130\)(弱爆了) 排名: \(Rank\ 22\) \(Rating\):\(-31\) \(T1\):[HHHOJ260]「NOIP模拟赛 捌」Dig ...

  7. 【四边形不等式】POJ1160[IOI2000]-Post Office

    [题目大意] v个村庄p个邮局,邮局在村庄里,给出村庄的位置,求每个村庄到最近邮局距离之和的最小值. [思路] 四边形不等式,虽然我并不会证明:( dp[i][j]表示前i个村庄建j个邮局的最小值,w ...

  8. HDU 5933 ArcSoft's Office Rearrangement 【模拟】(2016年中国大学生程序设计竞赛(杭州))

    ArcSoft's Office Rearrangement Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  9. 【转】【教程】office 2013 & visio 2013的激活

    原文网址:http://zhan.renren.com/sola86?gid=3602888498037097351&checked=true 1.下载安装文件 office和visio都有两 ...

随机推荐

  1. Prism中使用MEF的例子

    一个基本的例子,没有viewmodel,没有使用Behaviors 大体步骤: 1.创建应用程序 2.使用"Shell"替换"MainWindow"(silve ...

  2. Android 系统稳定性 - ANR(二)(转)

    编写者:李文栋P.S. OpenOffice粘贴过来后格式有些混乱. 1.2 如何分析ANR问题 引起ANR问题的根本原因,总的来说可以归纳为两类: 应用进程自身引起的,例如: 主线程阻塞.挂起.死循 ...

  3. Centos 7 安装 和 卸载 Mysql5.7(压缩包)

    今天装的了mysql,遇到了很多问题,好在最后一一解决了,现在记录在此,防止日后老路重走... 1.下载 当然是去官网,下一个linux下的版本,64位的 tar.gz,好吧这里贴个名字--[mysq ...

  4. MvvmLight ToolKit .Net4.5版本 CanExecute不能刷新界面bug

    一 问题重现    1.在使用最新版本v5.1的MvvmLight中(其实这个问题很早就有了),发现CanExecute不能很好地工作了.一个简单的工程,只有MainWindow和MainWindow ...

  5. 直流调速系统Modelica基本模型

    为了便于在OpenModelica进行仿真,形成一个完整的仿真模型,没有使用第三方的库,参照了DrModelica的例程,按照Modelica库的开源模型定义了所用的基本元件模型. 首先给出一些基本类 ...

  6. Expression Blend4经验分享:制作一个简单的文字按钮样式

    首先在Grid里放一个TextBlock,对象时间线窗口的结构树如下 右键点击grid,选择构成控件 会弹出构成控件的对话框,选择你要构成的控件类型,控件名称,控件样式存储位置 这里我们选择butto ...

  7. JAVA反射其实就是那么一回事

    概念:什么是反射 java反射机制: JAVA反射机制是在运行状态中, 对于任意一个类,都能够知道这个类的所有属性和方法: 对于任意一个对象,都能够调用它的任意一个方法和属性: 这种动态获取的信息以及 ...

  8. Android中的Semaphore

    信号量,了解过操作系统的人都知道,信号量是用来做什么的··· 在Android中,已经提供了Semaphore来帮助我们使用~ 那么,在开发中这家伙有什么用呢? 用的地方不多,但是却真的是好用至极! ...

  9. JVM内存管理------GC算法精解(五分钟让你彻底明白标记/清除算法)

    相信不少猿友看到标题就认为LZ是标题党了,不过既然您已经被LZ忽悠进来了,那就好好的享受一顿算法大餐吧.不过LZ丑话说前面哦,这篇文章应该能让各位彻底理解标记/清除算法,不过倘若各位猿友不能在五分钟内 ...

  10. 数学符号“s.t.”的意义

    在优化问题的求解中,如线性规划.非线性规划问题等,经常会遇到数学符号“s.t.”,它的意思是什么呢? “s.t.”,指 subject to,受限制于.... 例如: 目标函数:min {x+2} 约 ...