http://www.lydsy.com/JudgeOnline/problem.php?id=2242 (题目链接)

题意

  给出y,z,p。求:1.yz mod p;2.xy=z(mod p);3.yx=z(mod p)。

Solution

  1.快速幂

  2.exgcd

  3.BSGS

细节

  数学题就是细节多,具体看代码。

代码

// bzoj2242
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; map<int,int> mp; LL power(LL a,LL b,LL c) {
LL res=1;
while (b) {
if (b&1) res=res*a%c;
b>>=1;a=a*a%c;
}
return res;
}
void exgcd(LL a,LL b,LL &d,LL &x,LL &y) {
if (b==0) {d=a;x=1;y=0;return;}
exgcd(b,a%b,d,y,x);
y-=a/b*x;
}
LL BSGS(LL a,LL b,LL p) { //求解a^x=b(mod p),p为素数,无解返回-1.
if (a%p==0 && b==0) return 1;
if (a%p==0) return -1;
mp.clear();mp[1]=0; //注意a^0=1
int m=ceil(sqrt(p)); //向上取整,避免漏解
LL inv=power(a,p-m-1,p),e=1; //inv为a^m的逆元,用费马小定理求
for (int i=1;i<m;i++) { //求e[i]数组
e=e*a%p;
if (!mp.count(e)) mp[e]=i;
}
for (int i=0;i<m;i++) { //枚举a^(im),a^(im+1),a^(im+2)~~~
if (mp.count(b)) return mp[b]+i*m; //一定要是mp.count(),因为mp[b]可能为0
else b=b*inv%p;
}
return -1;
}
int main() {
LL T,K,Y,Z,P;scanf("%lld%lld",&T,&K);
while (T--) {
scanf("%lld%lld%lld",&Y,&Z,&P);
if (K==1) printf("%lld\n",power(Y,Z,P));
if (K==2) {
LL x,y,d;
exgcd(Y,P,d,x,y);
if (Z%d!=0) puts("Orz, I cannot find x!");
else printf("%lld\n",((Z/d)*x%(P/d)+(P/d))%(P/d));
}
if (K==3) {
LL ans=BSGS(Y,Z,P);
if (ans==-1) puts("Orz, I cannot find x!");
else printf("%lld\n",ans);
}
}
return 0;
}

  

  

【bzoj2242】 SDOI2011—计算器的更多相关文章

  1. [bzoj2242][Sdoi2011]计算器_exgcd_BSGS

    计算器 bzoj-2242 Sdoi-2011 题目大意:裸题,支持快速幂.扩展gcd.拔山盖世 注释:所有数据保证int,10组数据. 想法:裸题,就是注意一下exgcd别敲错... ... 最后, ...

  2. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  3. BZOJ2242 [SDOI2011]计算器

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  4. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  5. bzoj2242: [SDOI2011]计算器 BSGS+exgcd

    你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...

  6. 【数学 BSGS】bzoj2242: [SDOI2011]计算器

    数论的板子集合…… Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最 ...

  7. [bzoj2242][SDOI2011][计算器] (Baby-Step-Giant-Step+快速幂+exgcd)

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  8. bzoj2242: [SDOI2011]计算器 && BSGS 算法

    BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...

  9. 2018.12.18 bzoj2242: [SDOI2011]计算器(数论)

    传送门 数论基础题. 对于第一种情况用快速幂,第二种用exgcdexgcdexgcd,第三种用bsgsbsgsbsgs 于是自己瞎yyyyyy了一个bsgsbsgsbsgs的板子(不知道是不是数据水了 ...

  10. bzoj千题计划246:bzoj2242: [SDOI2011]计算器

    http://www.lydsy.com/JudgeOnline/problem.php?id=2242 #include<map> #include<cmath> #incl ...

随机推荐

  1. 夯实基础之php学习-2提高篇

    1,Jpgraph, 详见Php图形化jpgraph 2,文件系统 文件的操作步骤:打开文件->操作文件->关闭文件 打开文件fopen(filename,mode) 关闭文件fclose ...

  2. linux基本工具使用(二)

    1 查找某个目录下面一个所有的可执行文件,并且删除(对删除一个工程的可执行文件格外有用) find . -maxdepth 1 -file f -perm -111 | xargs rm

  3. page-cache层

    pagecache层内存管理 如果使用page,尤其对于32位系统来说,kmap & kunmap,可以把做struct *page与虚拟地址的映射 用kmap做一个临时的映射,然后通过kun ...

  4. IIS 伪静态配置(安装ISAPI_Rewrite配置)

    第一:首先到官方网站下载ISAPI_Rewrite 我的机子是32位的就下32位免费版的,链接地址如下: http://www.helicontech.com/download/isapi_rewri ...

  5. Linux 信号详解一(signal函数)

    信号列表 SIGABRT 进程停止运行 SIGALRM 警告钟 SIGFPE 算述运算例外 SIGHUP 系统挂断 SIGILL 非法指令 SIGINT 终端中断 SIGKILL 停止进程(此信号不能 ...

  6. getSelection、range 对象属性,方法理解,解释

    网上转了一圈发现没有selection方面的解释,自己捣鼓下 以这段文字为例子.. <p><b>法国国营铁路公司(SNCF)20日承认,</b>新订购的2000列火 ...

  7. Gruntjs: grunt-usemin使用心得

    grunt-usemin: Replaces references to non-optimized scripts or stylesheets into a set of HTML files u ...

  8. 命令行下 mysql 不是内部或外部命令排查方法

    首先确定你没有更改过MySQL的安装目录.如果你进行过改名或者更改了你的路径,那么要在相应的配置文件中更改你的你路径.找到C:\Windows\my.ini文件,更改你配置的文件路径,改成你修改后的路 ...

  9. 关于lazyload插件的一些笔记

    Lazy Load Plugin for jQuery 需要引入 jQuery,兼容各种 IE,适合 PC 端使用.详细 API 可以参考 http://www.appelsiini.net/proj ...

  10. .NET MVC HtmlHepler

    一.HtmlHepler 1.ActionLink() 动态生成 超链接:根据路由规则,生成对应的 html 代码. //1.注册路由信息 routes.MapRoute( name: "D ...