How to Shorten the Paper
. Remember: you are writing for an expert. Cross out all that is trivial or routine. . Avoid repetition: do not repeat the assumptions of a theorem at the beginning of its proof, or a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,....."). Do not repeat the same formula -- use a label instead. . Check all formulas: is each of them necessary?
General rules
We denote by $\mathbb{R}$ the set of all real numbers.
We have the following lemma.
The following lemma will be useful.
...... the following inequality is satisfied:
Phrases you can cross out
We denote by $\mathbb{R}$ the set of all real numbers.
We have the following lemma.
The following lemma will be useful.
...... the following inequality is satisfied:
Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix $\varepsilon>$ Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix $x\in X$ Let us first observe that $\Rrightarrow$ First observe that We will first compute $\Rrightarrow$ We first compute Hence we have $x=$ $\Rrightarrow$ Hence $x=$ Hence it follows that $x=$ $\Rrightarrow$ Hence $x=$ Taking into account () $\Rrightarrow$ By () By virtue of () $\Rrightarrow$ By () By relation () $\Rrightarrow$ By () In the interval $[,]$ $\Rrightarrow$ in $[,]$ There exists a function $f\in C(X)$ $\Rrightarrow$ There exists $f\in C(X)$ For every point $p\in M$ $\Rrightarrow$ For every $p\in M$ It is defined by the formula $F(x)=......$ $\Rrightarrow$ It is defined by $F(x)=......$ Theorem and Theorem $\Rrightarrow$ Theorems and This follows from (),(),() and () $\Rrightarrow$ This follows from ()-() For details see [],[] and [] $\Rrightarrow$ For details see []-[] The derivative with respect to $t$ $\Rrightarrow$ The $t-$ derivative A function of class $C^$ $\Rrightarrow$ A $C^$ function For arbitrary $x$ $\Rrightarrow$ For all $x$ (For every $x$) In the case $n=$ $\Rrightarrow$ For $n=$ This leads to a constradiction with the maximality of $f$ $\Rrightarrow$ .....,contrary to the maximality of $f$ Applying Lemma we conclude that $\Rrightarrow$ Lemma shows that ......, which completes the proof $\Rrightarrow$ .......$\Box$
Phrases you can shorten
Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix $\varepsilon>0$
Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix $x\in X$
Let us first observe that $\Rrightarrow$ First observe that
We will first compute $\Rrightarrow$ We first compute
Hence we have $x=1$ $\Rrightarrow$ Hence $x=1$
Hence it follows that $x=1$ $\Rrightarrow$ Hence $x=1$
Taking into account (4) $\Rrightarrow$ By (4)
By virtue of (4) $\Rrightarrow$ By (4)
By relation (4) $\Rrightarrow$ By (4)
In the interval $[0,1]$ $\Rrightarrow$ in $[0,1]$
There exists a function $f\in C(X)$ $\Rrightarrow$ There exists $f\in C(X)$
For every point $p\in M$ $\Rrightarrow$ For every $p\in M$
It is defined by the formula $F(x)=......$ $\Rrightarrow$ It is defined by $F(x)=......$
Theorem 2 and Theorem 5 $\Rrightarrow$ Theorems 2 and 5
This follows from (4),(5),(6) and (7) $\Rrightarrow$ This follows from (4)-(7)
For details see [3],[4] and [5] $\Rrightarrow$ For details see [3]-[5]
The derivative with respect to $t$ $\Rrightarrow$ The $t-$ derivative
A function of class $C^2$ $\Rrightarrow$ A $C^2$ function
For arbitrary $x$ $\Rrightarrow$ For all $x$ (For every $x$)
In the case $n=5$ $\Rrightarrow$ For $n=5$
This leads to a constradiction with the maximality of $f$ $\Rrightarrow$ .....,contrary to the maximality of $f$
Applying Lemma 1 we conclude that $\Rrightarrow$ Lemma 1 shows that ......, which completes the proof $\Rrightarrow$ .......$\Box$
How to Shorten the Paper的更多相关文章
- 激光打印机的Color/paper, Xerography介绍
Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...
- Facebook Paper使用的第三方库
Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...
- paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...
- #Deep Learning回顾#之2006年的Science Paper
大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...
- Tips for writing a paper
Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...
- How to (seriously) read a scientific paper
How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...
- How to read a scientific paper
How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...
- 如何写好一篇高质量的paper
http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...
- paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他
在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...
随机推荐
- windows Apache+cgi的配置方法
1. 配置config line 119 :打开#LoadModule rewrite_module modules/mod_rewrite.so line 192 :<Directory / ...
- 论文笔记之: Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function CVPR 2 ...
- EDIUS设置Alpha转场的教程
有刚开始学习EDIUS视频编辑软件的同学吗?你们是否需要一本很好的EDIUS教程呢?你们可以到EDIUS中文网站里面找哦,小编会一直更新EDIUS教程的,能给你们带来帮助我是非常高兴的.今天我们来一起 ...
- 怎么 才能显示Eclipse中Console的全部内容
可以如下设置 preference->run/debug->console 设置limit console output 为false,方便调试时,查看全部console. 这个真是太有用 ...
- Linux下编译安装PCRE库
备注:如果没有root权限,使用 --prefix 指定安装路径 ./configure --prefix=/home/work/tools/pcre-8.xx =================== ...
- oracle之压缩表
oracle压缩数据的处理基于数据库块,本质是通过消除在数据库中的重复数据来实现空间节约. 具体做法: 比较数据块中包含的所有字段或记录,其中重复的数据只在位于数据块开始部分的记号表(Symbol T ...
- jquery 复制DIV与相关事件
<div class="pages_img fix" name="fixpages"> <div class=& ...
- 使用Python xlwt写excel文件
如果需要使用Python写Excel文件,首先下载或者安装xlwt. pip install xlwt 下面的这些demo应该可以帮助开发者快速上手使用xlwt写Excel文件: 创建工作簿(work ...
- Intellij Idea系列之JavaSE项目的创建(一)
Intellij Idea系列之JavaSE项目的创建(一) 一.Intellij Idea于 Intellij Idea是捷克的Jetbrain公司的一款优秀的针对Java程序员的IDE,其自从问世 ...
- UIView常用的一些方法小记之setNeedsDisplay和setNeedsLayout
1,UIView的setNeedsDisplay和setNeedsLayout方法 首先两个方法都是异步执行的.而setNeedsDisplay会调用自动调用drawRect方法,这样可以拿到 UI ...