How to Shorten the Paper
. Remember: you are writing for an expert. Cross out all that is trivial or routine. . Avoid repetition: do not repeat the assumptions of a theorem at the beginning of its proof, or a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,....."). Do not repeat the same formula -- use a label instead. . Check all formulas: is each of them necessary?
General rules
We denote by $\mathbb{R}$ the set of all real numbers.
We have the following lemma.
The following lemma will be useful.
...... the following inequality is satisfied:
Phrases you can cross out
We denote by $\mathbb{R}$ the set of all real numbers.
We have the following lemma.
The following lemma will be useful.
...... the following inequality is satisfied:
Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix $\varepsilon>$ Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix $x\in X$ Let us first observe that $\Rrightarrow$ First observe that We will first compute $\Rrightarrow$ We first compute Hence we have $x=$ $\Rrightarrow$ Hence $x=$ Hence it follows that $x=$ $\Rrightarrow$ Hence $x=$ Taking into account () $\Rrightarrow$ By () By virtue of () $\Rrightarrow$ By () By relation () $\Rrightarrow$ By () In the interval $[,]$ $\Rrightarrow$ in $[,]$ There exists a function $f\in C(X)$ $\Rrightarrow$ There exists $f\in C(X)$ For every point $p\in M$ $\Rrightarrow$ For every $p\in M$ It is defined by the formula $F(x)=......$ $\Rrightarrow$ It is defined by $F(x)=......$ Theorem and Theorem $\Rrightarrow$ Theorems and This follows from (),(),() and () $\Rrightarrow$ This follows from ()-() For details see [],[] and [] $\Rrightarrow$ For details see []-[] The derivative with respect to $t$ $\Rrightarrow$ The $t-$ derivative A function of class $C^$ $\Rrightarrow$ A $C^$ function For arbitrary $x$ $\Rrightarrow$ For all $x$ (For every $x$) In the case $n=$ $\Rrightarrow$ For $n=$ This leads to a constradiction with the maximality of $f$ $\Rrightarrow$ .....,contrary to the maximality of $f$ Applying Lemma we conclude that $\Rrightarrow$ Lemma shows that ......, which completes the proof $\Rrightarrow$ .......$\Box$
Phrases you can shorten
Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix $\varepsilon>0$
Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix $x\in X$
Let us first observe that $\Rrightarrow$ First observe that
We will first compute $\Rrightarrow$ We first compute
Hence we have $x=1$ $\Rrightarrow$ Hence $x=1$
Hence it follows that $x=1$ $\Rrightarrow$ Hence $x=1$
Taking into account (4) $\Rrightarrow$ By (4)
By virtue of (4) $\Rrightarrow$ By (4)
By relation (4) $\Rrightarrow$ By (4)
In the interval $[0,1]$ $\Rrightarrow$ in $[0,1]$
There exists a function $f\in C(X)$ $\Rrightarrow$ There exists $f\in C(X)$
For every point $p\in M$ $\Rrightarrow$ For every $p\in M$
It is defined by the formula $F(x)=......$ $\Rrightarrow$ It is defined by $F(x)=......$
Theorem 2 and Theorem 5 $\Rrightarrow$ Theorems 2 and 5
This follows from (4),(5),(6) and (7) $\Rrightarrow$ This follows from (4)-(7)
For details see [3],[4] and [5] $\Rrightarrow$ For details see [3]-[5]
The derivative with respect to $t$ $\Rrightarrow$ The $t-$ derivative
A function of class $C^2$ $\Rrightarrow$ A $C^2$ function
For arbitrary $x$ $\Rrightarrow$ For all $x$ (For every $x$)
In the case $n=5$ $\Rrightarrow$ For $n=5$
This leads to a constradiction with the maximality of $f$ $\Rrightarrow$ .....,contrary to the maximality of $f$
Applying Lemma 1 we conclude that $\Rrightarrow$ Lemma 1 shows that ......, which completes the proof $\Rrightarrow$ .......$\Box$
How to Shorten the Paper的更多相关文章
- 激光打印机的Color/paper, Xerography介绍
Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...
- Facebook Paper使用的第三方库
Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...
- paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...
- #Deep Learning回顾#之2006年的Science Paper
大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...
- Tips for writing a paper
Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...
- How to (seriously) read a scientific paper
How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...
- How to read a scientific paper
How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...
- 如何写好一篇高质量的paper
http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...
- paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他
在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...
随机推荐
- Java设计模式(十一) 享元模式
原创文章,同步发自作者个人博客 http://www.jasongj.com/design_pattern/flyweight/.转载请注明出处 享元模式介绍 享元模式适用场景 面向对象技术可以很好的 ...
- POJ 1511 Invitation Cards (spfa的邻接表)
Invitation Cards Time Limit : 16000/8000ms (Java/Other) Memory Limit : 524288/262144K (Java/Other) ...
- jquery中ajax方法返回的三种数据类型:text、json、xml;
1.当dataType:"text"时,处理页面用的是DBDA类中的Strquery()方法,所以返回的数据是下面这样的,所以要对返回来的数据用split根据“|”和“^”来分割, ...
- 关于 MAXScript 逐行写入文本
官方帮助文档FileStream Values部分有相关介绍. fn format_txt filepath filetext = ( if doesFileExist filepath == tru ...
- 使用 .bash_profile与.bashrc修改字符集
发现终端设置为UTF8显示以后 svn打印终端就一直乱码, 是用户字符集的原因 有人建议 修改.bashrc 有人建议修改~/.bash_profile 搜索了下区别 /etc/profile:此文件 ...
- 线下线上对接的一种思路(本地erp与线上电子商务平台对接)
目前很多公司都希望本地的ERP能够与线上的电子商务平台进行对接. 但是很多的线下ERP系统商不愿意修改代码来做相应的对接,或者觉得太话费成本. 而对于企业本身,又会有很多的特殊需求. 下面略述一家进口 ...
- (C#) Interview Questions.
(Note: Most are collected from Internet. 绝大部分内容来自互联网) 1. What's the difference between Hashtable and ...
- 使用C#和.NET的原因
早在2000年6月,微软公布.NET之后不久,Ximian公司诞生了一个开源项目叫做Mono,运行在Linux环境下面的C#编译器和.NET Framework.十年后,在2011年,Ximian的创 ...
- HTC Vive开发笔记之UI Guideline
本文转自HTC官方论坛,原址https://www.htcvive.com/cn/forum/chat.php?mod=viewthread&tid=1641&extra=page=1 ...
- 将表里的数据批量生成INSERT语句的存储过程
有时候,我们需要将某个表里的数据全部导出来,迁移到另一个相同结构的库中,这里可以采取一个简便的方法,通过一个存储过程批量导出数据并生成SQL语句,非常方便.存储过程如下: )) as begin de ...