How to Shorten the Paper
. Remember: you are writing for an expert. Cross out all that is trivial or routine. . Avoid repetition: do not repeat the assumptions of a theorem at the beginning of its proof, or a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,....."). Do not repeat the same formula -- use a label instead. . Check all formulas: is each of them necessary?
General rules
We denote by $\mathbb{R}$ the set of all real numbers.
We have the following lemma.
The following lemma will be useful.
...... the following inequality is satisfied:
Phrases you can cross out
We denote by $\mathbb{R}$ the set of all real numbers.
We have the following lemma.
The following lemma will be useful.
...... the following inequality is satisfied:
Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix $\varepsilon>$ Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix $x\in X$ Let us first observe that $\Rrightarrow$ First observe that We will first compute $\Rrightarrow$ We first compute Hence we have $x=$ $\Rrightarrow$ Hence $x=$ Hence it follows that $x=$ $\Rrightarrow$ Hence $x=$ Taking into account () $\Rrightarrow$ By () By virtue of () $\Rrightarrow$ By () By relation () $\Rrightarrow$ By () In the interval $[,]$ $\Rrightarrow$ in $[,]$ There exists a function $f\in C(X)$ $\Rrightarrow$ There exists $f\in C(X)$ For every point $p\in M$ $\Rrightarrow$ For every $p\in M$ It is defined by the formula $F(x)=......$ $\Rrightarrow$ It is defined by $F(x)=......$ Theorem and Theorem $\Rrightarrow$ Theorems and This follows from (),(),() and () $\Rrightarrow$ This follows from ()-() For details see [],[] and [] $\Rrightarrow$ For details see []-[] The derivative with respect to $t$ $\Rrightarrow$ The $t-$ derivative A function of class $C^$ $\Rrightarrow$ A $C^$ function For arbitrary $x$ $\Rrightarrow$ For all $x$ (For every $x$) In the case $n=$ $\Rrightarrow$ For $n=$ This leads to a constradiction with the maximality of $f$ $\Rrightarrow$ .....,contrary to the maximality of $f$ Applying Lemma we conclude that $\Rrightarrow$ Lemma shows that ......, which completes the proof $\Rrightarrow$ .......$\Box$
Phrases you can shorten
Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix $\varepsilon>0$
Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix $x\in X$
Let us first observe that $\Rrightarrow$ First observe that
We will first compute $\Rrightarrow$ We first compute
Hence we have $x=1$ $\Rrightarrow$ Hence $x=1$
Hence it follows that $x=1$ $\Rrightarrow$ Hence $x=1$
Taking into account (4) $\Rrightarrow$ By (4)
By virtue of (4) $\Rrightarrow$ By (4)
By relation (4) $\Rrightarrow$ By (4)
In the interval $[0,1]$ $\Rrightarrow$ in $[0,1]$
There exists a function $f\in C(X)$ $\Rrightarrow$ There exists $f\in C(X)$
For every point $p\in M$ $\Rrightarrow$ For every $p\in M$
It is defined by the formula $F(x)=......$ $\Rrightarrow$ It is defined by $F(x)=......$
Theorem 2 and Theorem 5 $\Rrightarrow$ Theorems 2 and 5
This follows from (4),(5),(6) and (7) $\Rrightarrow$ This follows from (4)-(7)
For details see [3],[4] and [5] $\Rrightarrow$ For details see [3]-[5]
The derivative with respect to $t$ $\Rrightarrow$ The $t-$ derivative
A function of class $C^2$ $\Rrightarrow$ A $C^2$ function
For arbitrary $x$ $\Rrightarrow$ For all $x$ (For every $x$)
In the case $n=5$ $\Rrightarrow$ For $n=5$
This leads to a constradiction with the maximality of $f$ $\Rrightarrow$ .....,contrary to the maximality of $f$
Applying Lemma 1 we conclude that $\Rrightarrow$ Lemma 1 shows that ......, which completes the proof $\Rrightarrow$ .......$\Box$
How to Shorten the Paper的更多相关文章
- 激光打印机的Color/paper, Xerography介绍
Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...
- Facebook Paper使用的第三方库
Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...
- paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...
- #Deep Learning回顾#之2006年的Science Paper
大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...
- Tips for writing a paper
Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...
- How to (seriously) read a scientific paper
How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...
- How to read a scientific paper
How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...
- 如何写好一篇高质量的paper
http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...
- paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他
在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...
随机推荐
- Runloop之个人理解
Runloop之个人理解更像是一种线程等待机制,传统线程的消息传入机制,线程收到什么样的消息,就执行什么样的动作,如果是信号量队列型的,其实就基本实现了线程在无消息时挂住休眠;而不是在每隔一段时间就要 ...
- 【 D3.js 入门系列 --- 1 】 第一个程序HelloWorld
下面开始用D3.js处理第一个简单问题,先看下面的代码: <html> <head> <meta charset="utf-8"> <ti ...
- **stack smashing detecting**
stack smashing aborted 堆 猛烈撞击 流失 我在使用数据时写了 tmp_row = row + pos[num1][[0]; tmp_col = col + pos[num1][ ...
- java SpringUtil获取bean
package com.whaty.framework.common.spring; import java.io.PrintStream; import org.springframework.be ...
- SQLite语句练习题
1. 查询Student表中的所有记录的Sname.Ssex和Class列. 2. 查询教师所有的单位即不重复的Depart列. 3. 查询Student表的所有记录. 4. 查询Score表中成绩在 ...
- CentOS 配置 iptables 配合 ss
转自:http://www.jianshu.com/p/28b8536a6c8a 环境: CentOS 6 shadowsocks iptables 在安装了ss-bash后,ss-bash每添加一次 ...
- AndroidStudio开发出现Warning:Gradle version 2.10 is required. Current version is 2.8. If u
Warning:Gradle version 2.10 is required. Current version is 2.8. If using the gradle wrapper, try ed ...
- Fortran学习心得
编译调试: 服务器上所用的编译器可以编译.F90的文件,同时,经过测试已经知道有两款编译器:gfortran和ifort. 另外,查看编译器的bash命令是:gfortran -v. 编程算法思想与C ...
- phpunit4.1的干净测试
一般而言,写测试时需要加载一些文件来进行自动加载 但在phpunit4.1中只要其中一个测试文件加载了,其他测试文件就不需要再加载
- Faster-RCNN 训练自己的数据
在前一篇随笔中,数据制作成了VOC2007格式,可以用于Faster-RCNN的训练. 1.针对数据的修改 修改datasets\VOCdevkit2007\VOCcode\VOCinit.m,我只做 ...