. Remember: you are writing for an expert. Cross out all that is trivial or routine. 

 . Avoid repetition: do not  repeat the assumptions of a theorem at the beginning of its proof, or  a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,.....").  Do not repeat the same formula -- use a  label instead.

 . Check all formulas: is each of them necessary?

General rules

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied: 

Phrases you can cross out

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied:

 Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>$

 Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

 Let us first observe that  $\Rrightarrow$  First observe that

 We will first compute   $\Rrightarrow$  We first compute

 Hence we have $x=$    $\Rrightarrow$  Hence $x=$

 Hence it follows that  $x=$    $\Rrightarrow$  Hence $x=$

 Taking into account ()   $\Rrightarrow$  By ()

 By virtue of ()   $\Rrightarrow$  By ()

 By relation ()   $\Rrightarrow$  By ()

 In the interval $[,]$   $\Rrightarrow$  in $[,]$

 There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

 For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

 It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

 Theorem  and Theorem    $\Rrightarrow$  Theorems  and 

 This follows from (),(),() and ()   $\Rrightarrow$  This follows from ()-()

 For details see  [],[] and []   $\Rrightarrow$  For details see []-[]

 The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

 A function of class $C^$   $\Rrightarrow$  A $C^$ function

 For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

 In the case $n=$   $\Rrightarrow$  For $n=$

 This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

 Applying Lemma  we conclude that   $\Rrightarrow$  Lemma  shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

Phrases you can shorten

Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>0$

Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

Let us first observe that  $\Rrightarrow$  First observe that

We will first compute   $\Rrightarrow$  We first compute

Hence we have $x=1$    $\Rrightarrow$  Hence $x=1$

Hence it follows that  $x=1$    $\Rrightarrow$  Hence $x=1$

Taking into account (4)   $\Rrightarrow$  By (4)

By virtue of (4)   $\Rrightarrow$  By (4)

By relation (4)   $\Rrightarrow$  By (4)

In the interval $[0,1]$   $\Rrightarrow$  in $[0,1]$

There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

Theorem 2 and Theorem 5   $\Rrightarrow$  Theorems 2 and 5

This follows from (4),(5),(6) and (7)   $\Rrightarrow$  This follows from (4)-(7)

For details see  [3],[4] and [5]   $\Rrightarrow$  For details see [3]-[5]

The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

A function of class $C^2$   $\Rrightarrow$  A $C^2$ function

For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

In the case $n=5$   $\Rrightarrow$  For $n=5$

This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

Applying Lemma 1 we conclude that   $\Rrightarrow$  Lemma 1 shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

How to Shorten the Paper的更多相关文章

  1. 激光打印机的Color/paper, Xerography介绍

    Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...

  2. Facebook Paper使用的第三方库

    Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...

  3. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

  4. #Deep Learning回顾#之2006年的Science Paper

    大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...

  5. Tips for writing a paper

    Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...

  6. How to (seriously) read a scientific paper

    How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...

  7. How to read a scientific paper

    How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...

  8. 如何写好一篇高质量的paper

    http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...

  9. paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他

    在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...

随机推荐

  1. HDU 4473 Exam 枚举

    原题转化为求a*b*c <=n中选出两个数组成有序对<a,b>的选法数. 令a<=b<=c.... 分情况讨论: (1)全部相等,即a = b = c. 选法有n^(1/ ...

  2. LeetCode() 数字1的个数

    int ones = 0; for (long m = 1; m <= n; m *= 10) { long a = n/m, b = n%m; ones += (a + 8) / 10 * m ...

  3. Toolkit.getImage获取图片

    public class Img { private static final Toolkit tk = Toolkit.getDefaultToolkit(); public static fina ...

  4. There is already an open DataReader associated with this Command which must be closed first." exception in Entity Framework

    Fixing the "There is already an open DataReader associated with this Command which must be clos ...

  5. php 微信公众平台上传多媒体接口 41005错误

    文链接: http://www.maoyupeng.com/wechart-upload-image-errorcode-41005.html PHP的cURL支持通过给CURL_POSTFIELDS ...

  6. php Base64编码/解码

    一.PHP使用方法 //加密 $str = 'This is an encoded string'; echo base64_encode($str); //解密 $str = 'VGhpcyBpcy ...

  7. 树莓派 自身摄像头的opencv调用

    之前写过一篇随笔关于树莓派3上摄像头的调用,使用的方式是安装v4l2驱动. 实际上有一种更加简单的方法. 树莓派中的camera module是放在/boot/目录下以固件的形式加载的,不是一个标准的 ...

  8. [DFNews] EIFT更新至1.2,支持iPhone4s及iPhone5物理获取

    俄罗斯厂商Elcomsoft近日更新了其旗下的iOS取证软件Elcomesoft iOS Forensic Toolkit,更新后的1.2版本支持针对iOS 4-6的iPhone 4s.iPhone5 ...

  9. XE6移动开发环境搭建之IOS篇(7):在Mac OSX 10.8中安装Xcode4.6.3(有图有真相)

    网上能找到的关于Delphi XE系列的移动开发环境的相关文章甚少,本文尽量以详细的图文内容.傻瓜式的表达来告诉你想要的答案. 原创作品,请尊重作者劳动成果,转载请注明出处!!! 在安装Xcode前, ...

  10. pH 值与曝气对硝化细菌硝化作用的影响

    http://wenku.baidu.com/view/c2723434eefdc8d376ee325d.html 摘要: 目的 探讨硝化细菌最佳工作条件,为应用和生产提供依据. 方法 通过人工调节液 ...