. Remember: you are writing for an expert. Cross out all that is trivial or routine. 

 . Avoid repetition: do not  repeat the assumptions of a theorem at the beginning of its proof, or  a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,.....").  Do not repeat the same formula -- use a  label instead.

 . Check all formulas: is each of them necessary?

General rules

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied: 

Phrases you can cross out

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied:

 Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>$

 Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

 Let us first observe that  $\Rrightarrow$  First observe that

 We will first compute   $\Rrightarrow$  We first compute

 Hence we have $x=$    $\Rrightarrow$  Hence $x=$

 Hence it follows that  $x=$    $\Rrightarrow$  Hence $x=$

 Taking into account ()   $\Rrightarrow$  By ()

 By virtue of ()   $\Rrightarrow$  By ()

 By relation ()   $\Rrightarrow$  By ()

 In the interval $[,]$   $\Rrightarrow$  in $[,]$

 There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

 For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

 It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

 Theorem  and Theorem    $\Rrightarrow$  Theorems  and 

 This follows from (),(),() and ()   $\Rrightarrow$  This follows from ()-()

 For details see  [],[] and []   $\Rrightarrow$  For details see []-[]

 The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

 A function of class $C^$   $\Rrightarrow$  A $C^$ function

 For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

 In the case $n=$   $\Rrightarrow$  For $n=$

 This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

 Applying Lemma  we conclude that   $\Rrightarrow$  Lemma  shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

Phrases you can shorten

Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>0$

Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

Let us first observe that  $\Rrightarrow$  First observe that

We will first compute   $\Rrightarrow$  We first compute

Hence we have $x=1$    $\Rrightarrow$  Hence $x=1$

Hence it follows that  $x=1$    $\Rrightarrow$  Hence $x=1$

Taking into account (4)   $\Rrightarrow$  By (4)

By virtue of (4)   $\Rrightarrow$  By (4)

By relation (4)   $\Rrightarrow$  By (4)

In the interval $[0,1]$   $\Rrightarrow$  in $[0,1]$

There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

Theorem 2 and Theorem 5   $\Rrightarrow$  Theorems 2 and 5

This follows from (4),(5),(6) and (7)   $\Rrightarrow$  This follows from (4)-(7)

For details see  [3],[4] and [5]   $\Rrightarrow$  For details see [3]-[5]

The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

A function of class $C^2$   $\Rrightarrow$  A $C^2$ function

For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

In the case $n=5$   $\Rrightarrow$  For $n=5$

This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

Applying Lemma 1 we conclude that   $\Rrightarrow$  Lemma 1 shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

How to Shorten the Paper的更多相关文章

  1. 激光打印机的Color/paper, Xerography介绍

    Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...

  2. Facebook Paper使用的第三方库

    Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...

  3. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

  4. #Deep Learning回顾#之2006年的Science Paper

    大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...

  5. Tips for writing a paper

    Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...

  6. How to (seriously) read a scientific paper

    How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...

  7. How to read a scientific paper

    How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...

  8. 如何写好一篇高质量的paper

    http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...

  9. paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他

    在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...

随机推荐

  1. Runloop之个人理解

    Runloop之个人理解更像是一种线程等待机制,传统线程的消息传入机制,线程收到什么样的消息,就执行什么样的动作,如果是信号量队列型的,其实就基本实现了线程在无消息时挂住休眠;而不是在每隔一段时间就要 ...

  2. 【 D3.js 入门系列 --- 1 】 第一个程序HelloWorld

    下面开始用D3.js处理第一个简单问题,先看下面的代码: <html> <head> <meta charset="utf-8"> <ti ...

  3. **stack smashing detecting**

    stack smashing aborted 堆 猛烈撞击 流失 我在使用数据时写了 tmp_row = row + pos[num1][[0]; tmp_col = col + pos[num1][ ...

  4. java SpringUtil获取bean

    package com.whaty.framework.common.spring; import java.io.PrintStream; import org.springframework.be ...

  5. SQLite语句练习题

    1. 查询Student表中的所有记录的Sname.Ssex和Class列. 2. 查询教师所有的单位即不重复的Depart列. 3. 查询Student表的所有记录. 4. 查询Score表中成绩在 ...

  6. CentOS 配置 iptables 配合 ss

    转自:http://www.jianshu.com/p/28b8536a6c8a 环境: CentOS 6 shadowsocks iptables 在安装了ss-bash后,ss-bash每添加一次 ...

  7. AndroidStudio开发出现Warning:Gradle version 2.10 is required. Current version is 2.8. If u

    Warning:Gradle version 2.10 is required. Current version is 2.8. If using the gradle wrapper, try ed ...

  8. Fortran学习心得

    编译调试: 服务器上所用的编译器可以编译.F90的文件,同时,经过测试已经知道有两款编译器:gfortran和ifort. 另外,查看编译器的bash命令是:gfortran -v. 编程算法思想与C ...

  9. phpunit4.1的干净测试

    一般而言,写测试时需要加载一些文件来进行自动加载 但在phpunit4.1中只要其中一个测试文件加载了,其他测试文件就不需要再加载

  10. Faster-RCNN 训练自己的数据

    在前一篇随笔中,数据制作成了VOC2007格式,可以用于Faster-RCNN的训练. 1.针对数据的修改 修改datasets\VOCdevkit2007\VOCcode\VOCinit.m,我只做 ...