. Remember: you are writing for an expert. Cross out all that is trivial or routine. 

 . Avoid repetition: do not  repeat the assumptions of a theorem at the beginning of its proof, or  a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,.....").  Do not repeat the same formula -- use a  label instead.

 . Check all formulas: is each of them necessary?

General rules

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied: 

Phrases you can cross out

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied:

 Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>$

 Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

 Let us first observe that  $\Rrightarrow$  First observe that

 We will first compute   $\Rrightarrow$  We first compute

 Hence we have $x=$    $\Rrightarrow$  Hence $x=$

 Hence it follows that  $x=$    $\Rrightarrow$  Hence $x=$

 Taking into account ()   $\Rrightarrow$  By ()

 By virtue of ()   $\Rrightarrow$  By ()

 By relation ()   $\Rrightarrow$  By ()

 In the interval $[,]$   $\Rrightarrow$  in $[,]$

 There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

 For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

 It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

 Theorem  and Theorem    $\Rrightarrow$  Theorems  and 

 This follows from (),(),() and ()   $\Rrightarrow$  This follows from ()-()

 For details see  [],[] and []   $\Rrightarrow$  For details see []-[]

 The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

 A function of class $C^$   $\Rrightarrow$  A $C^$ function

 For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

 In the case $n=$   $\Rrightarrow$  For $n=$

 This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

 Applying Lemma  we conclude that   $\Rrightarrow$  Lemma  shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

Phrases you can shorten

Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>0$

Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

Let us first observe that  $\Rrightarrow$  First observe that

We will first compute   $\Rrightarrow$  We first compute

Hence we have $x=1$    $\Rrightarrow$  Hence $x=1$

Hence it follows that  $x=1$    $\Rrightarrow$  Hence $x=1$

Taking into account (4)   $\Rrightarrow$  By (4)

By virtue of (4)   $\Rrightarrow$  By (4)

By relation (4)   $\Rrightarrow$  By (4)

In the interval $[0,1]$   $\Rrightarrow$  in $[0,1]$

There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

Theorem 2 and Theorem 5   $\Rrightarrow$  Theorems 2 and 5

This follows from (4),(5),(6) and (7)   $\Rrightarrow$  This follows from (4)-(7)

For details see  [3],[4] and [5]   $\Rrightarrow$  For details see [3]-[5]

The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

A function of class $C^2$   $\Rrightarrow$  A $C^2$ function

For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

In the case $n=5$   $\Rrightarrow$  For $n=5$

This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

Applying Lemma 1 we conclude that   $\Rrightarrow$  Lemma 1 shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

How to Shorten the Paper的更多相关文章

  1. 激光打印机的Color/paper, Xerography介绍

    Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...

  2. Facebook Paper使用的第三方库

    Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...

  3. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

  4. #Deep Learning回顾#之2006年的Science Paper

    大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...

  5. Tips for writing a paper

    Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...

  6. How to (seriously) read a scientific paper

    How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...

  7. How to read a scientific paper

    How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...

  8. 如何写好一篇高质量的paper

    http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...

  9. paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他

    在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...

随机推荐

  1. [NOIP2011] mayan游戏(搜索+剪枝)

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  2. Linux设计准则

     计算机体系结构: 运算器 控制器 存储器,内存,编址 输出设备 输入设备 Linux内核功能: 进程管理内存管理文件系统网络功能硬件驱动安全机制 Linux的基本原则: 1.由目的单一的小程序组成: ...

  3. ZFS(一):ZFS在Debian GNU/Linux上的安装

    以下内容翻译自https://pthree.org/2012/04/17/install-zfs-on-debian-gnulinux/,并附有原文,由于是第一次翻译,如有任何翻译不恰当之处,欢迎指出 ...

  4. Python decode与encode

      字符串在Python内部的表示是unicode编码(8-bit string),因此,在做编码转换时,通常需要以unicode作为中间编码,即先将其他编码的字符串解码(decode)成unicod ...

  5. python 面向对象学习

    ------Python面向对象初 下面写一个类的简单实用,以便方便理解类 #python 3.5环境,解释器在linux需要改变 #阅读手册查询readme文件 #作者:S12-陈金彭 class ...

  6. oracle11g安装和基本的使用-转载

    一.测试操作系统和硬件环境是否符合,我使用的是win2008企业版.下面的都是step by step看图就ok了,不再详细解释. 请留意下面的总的设置步骤:--------------------- ...

  7. Python filter,map,lambda,reduce,列表解析

    filter用法 filter(func,seq) 将seq的元素逐一代入func,通过func的返回值来判断是保留还是过滤 >>> def foo(x): return x> ...

  8. finder的隐藏文件&IOS虚拟机地址

    在终端里输入下面命令即可让它们显示出来. defaults write com.apple.finder AppleShowAllFiles -bool true   如果想恢复隐藏,可以用这个命令: ...

  9. Django base view

    class django.views.generic.base.View 它是基类的基类,其它View基类都是从这继承的. 官例: from django.http import HttpRespon ...

  10. 自动化测试selenium+java 第三章

    import java.sql.Time;import java.util.concurrent.TimeUnit; import org.junit.BeforeClass;import org.o ...