. Remember: you are writing for an expert. Cross out all that is trivial or routine. 

 . Avoid repetition: do not  repeat the assumptions of a theorem at the beginning of its proof, or  a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,.....").  Do not repeat the same formula -- use a  label instead.

 . Check all formulas: is each of them necessary?

General rules

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied: 

Phrases you can cross out

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied:

 Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>$

 Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

 Let us first observe that  $\Rrightarrow$  First observe that

 We will first compute   $\Rrightarrow$  We first compute

 Hence we have $x=$    $\Rrightarrow$  Hence $x=$

 Hence it follows that  $x=$    $\Rrightarrow$  Hence $x=$

 Taking into account ()   $\Rrightarrow$  By ()

 By virtue of ()   $\Rrightarrow$  By ()

 By relation ()   $\Rrightarrow$  By ()

 In the interval $[,]$   $\Rrightarrow$  in $[,]$

 There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

 For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

 It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

 Theorem  and Theorem    $\Rrightarrow$  Theorems  and 

 This follows from (),(),() and ()   $\Rrightarrow$  This follows from ()-()

 For details see  [],[] and []   $\Rrightarrow$  For details see []-[]

 The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

 A function of class $C^$   $\Rrightarrow$  A $C^$ function

 For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

 In the case $n=$   $\Rrightarrow$  For $n=$

 This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

 Applying Lemma  we conclude that   $\Rrightarrow$  Lemma  shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

Phrases you can shorten

Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>0$

Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

Let us first observe that  $\Rrightarrow$  First observe that

We will first compute   $\Rrightarrow$  We first compute

Hence we have $x=1$    $\Rrightarrow$  Hence $x=1$

Hence it follows that  $x=1$    $\Rrightarrow$  Hence $x=1$

Taking into account (4)   $\Rrightarrow$  By (4)

By virtue of (4)   $\Rrightarrow$  By (4)

By relation (4)   $\Rrightarrow$  By (4)

In the interval $[0,1]$   $\Rrightarrow$  in $[0,1]$

There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

Theorem 2 and Theorem 5   $\Rrightarrow$  Theorems 2 and 5

This follows from (4),(5),(6) and (7)   $\Rrightarrow$  This follows from (4)-(7)

For details see  [3],[4] and [5]   $\Rrightarrow$  For details see [3]-[5]

The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

A function of class $C^2$   $\Rrightarrow$  A $C^2$ function

For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

In the case $n=5$   $\Rrightarrow$  For $n=5$

This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

Applying Lemma 1 we conclude that   $\Rrightarrow$  Lemma 1 shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

How to Shorten the Paper的更多相关文章

  1. 激光打印机的Color/paper, Xerography介绍

    Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...

  2. Facebook Paper使用的第三方库

    Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...

  3. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

  4. #Deep Learning回顾#之2006年的Science Paper

    大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...

  5. Tips for writing a paper

    Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...

  6. How to (seriously) read a scientific paper

    How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...

  7. How to read a scientific paper

    How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...

  8. 如何写好一篇高质量的paper

    http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...

  9. paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他

    在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...

随机推荐

  1. windows Apache+cgi的配置方法

    1.  配置config line 119 :打开#LoadModule rewrite_module modules/mod_rewrite.so line 192 :<Directory / ...

  2. 论文笔记之: Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function

    Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function CVPR 2 ...

  3. EDIUS设置Alpha转场的教程

    有刚开始学习EDIUS视频编辑软件的同学吗?你们是否需要一本很好的EDIUS教程呢?你们可以到EDIUS中文网站里面找哦,小编会一直更新EDIUS教程的,能给你们带来帮助我是非常高兴的.今天我们来一起 ...

  4. 怎么 才能显示Eclipse中Console的全部内容

    可以如下设置 preference->run/debug->console 设置limit console output 为false,方便调试时,查看全部console. 这个真是太有用 ...

  5. Linux下编译安装PCRE库

    备注:如果没有root权限,使用 --prefix 指定安装路径 ./configure --prefix=/home/work/tools/pcre-8.xx =================== ...

  6. oracle之压缩表

    oracle压缩数据的处理基于数据库块,本质是通过消除在数据库中的重复数据来实现空间节约. 具体做法: 比较数据块中包含的所有字段或记录,其中重复的数据只在位于数据块开始部分的记号表(Symbol T ...

  7. jquery 复制DIV与相关事件

    <div class="pages_img fix" name="fixpages">                <div class=& ...

  8. 使用Python xlwt写excel文件

    如果需要使用Python写Excel文件,首先下载或者安装xlwt. pip install xlwt 下面的这些demo应该可以帮助开发者快速上手使用xlwt写Excel文件: 创建工作簿(work ...

  9. Intellij Idea系列之JavaSE项目的创建(一)

    Intellij Idea系列之JavaSE项目的创建(一) 一.Intellij Idea于 Intellij Idea是捷克的Jetbrain公司的一款优秀的针对Java程序员的IDE,其自从问世 ...

  10. UIView常用的一些方法小记之setNeedsDisplay和setNeedsLayout

    1,UIView的setNeedsDisplay和setNeedsLayout方法 首先两个方法都是异步执行的.而setNeedsDisplay会调用自动调用drawRect方法,这样可以拿到  UI ...