. Remember: you are writing for an expert. Cross out all that is trivial or routine. 

 . Avoid repetition: do not  repeat the assumptions of a theorem at the beginning of its proof, or  a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,.....").  Do not repeat the same formula -- use a  label instead.

 . Check all formulas: is each of them necessary?

General rules

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied: 

Phrases you can cross out

We denote by $\mathbb{R}$  the set of all real numbers.

We have the following lemma.

The following lemma will be useful.

...... the following inequality is satisfied:

 Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>$

 Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

 Let us first observe that  $\Rrightarrow$  First observe that

 We will first compute   $\Rrightarrow$  We first compute

 Hence we have $x=$    $\Rrightarrow$  Hence $x=$

 Hence it follows that  $x=$    $\Rrightarrow$  Hence $x=$

 Taking into account ()   $\Rrightarrow$  By ()

 By virtue of ()   $\Rrightarrow$  By ()

 By relation ()   $\Rrightarrow$  By ()

 In the interval $[,]$   $\Rrightarrow$  in $[,]$

 There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

 For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

 It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

 Theorem  and Theorem    $\Rrightarrow$  Theorems  and 

 This follows from (),(),() and ()   $\Rrightarrow$  This follows from ()-()

 For details see  [],[] and []   $\Rrightarrow$  For details see []-[]

 The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

 A function of class $C^$   $\Rrightarrow$  A $C^$ function

 For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

 In the case $n=$   $\Rrightarrow$  For $n=$

 This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

 Applying Lemma  we conclude that   $\Rrightarrow$  Lemma  shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

Phrases you can shorten

Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix  $\varepsilon>0$

Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix  $x\in X$

Let us first observe that  $\Rrightarrow$  First observe that

We will first compute   $\Rrightarrow$  We first compute

Hence we have $x=1$    $\Rrightarrow$  Hence $x=1$

Hence it follows that  $x=1$    $\Rrightarrow$  Hence $x=1$

Taking into account (4)   $\Rrightarrow$  By (4)

By virtue of (4)   $\Rrightarrow$  By (4)

By relation (4)   $\Rrightarrow$  By (4)

In the interval $[0,1]$   $\Rrightarrow$  in $[0,1]$

There exists a  function $f\in C(X)$   $\Rrightarrow$  There exists $f\in C(X)$

For every point $p\in M$   $\Rrightarrow$ For every $p\in M$

It is defined by the formula $F(x)=......$   $\Rrightarrow$  It is defined by $F(x)=......$

Theorem 2 and Theorem 5   $\Rrightarrow$  Theorems 2 and 5

This follows from (4),(5),(6) and (7)   $\Rrightarrow$  This follows from (4)-(7)

For details see  [3],[4] and [5]   $\Rrightarrow$  For details see [3]-[5]

The derivative with respect to $t$   $\Rrightarrow$  The $t-$ derivative

A function of class $C^2$   $\Rrightarrow$  A $C^2$ function

For arbitrary $x$   $\Rrightarrow$  For all $x$ (For every  $x$)

In the case $n=5$   $\Rrightarrow$  For $n=5$

This leads to  a constradiction with the maximality of $f$   $\Rrightarrow$  .....,contrary to the maximality of $f$

Applying Lemma 1 we conclude that   $\Rrightarrow$  Lemma 1 shows that ......, which completes the proof  $\Rrightarrow$ .......$\Box$

How to Shorten the Paper的更多相关文章

  1. 激光打印机的Color/paper, Xerography介绍

    Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...

  2. Facebook Paper使用的第三方库

    Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...

  3. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

  4. #Deep Learning回顾#之2006年的Science Paper

    大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...

  5. Tips for writing a paper

    Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...

  6. How to (seriously) read a scientific paper

    How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...

  7. How to read a scientific paper

    How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...

  8. 如何写好一篇高质量的paper

    http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...

  9. paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他

    在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...

随机推荐

  1. Java设计模式(十一) 享元模式

    原创文章,同步发自作者个人博客 http://www.jasongj.com/design_pattern/flyweight/.转载请注明出处 享元模式介绍 享元模式适用场景 面向对象技术可以很好的 ...

  2. POJ 1511 Invitation Cards (spfa的邻接表)

    Invitation Cards Time Limit : 16000/8000ms (Java/Other)   Memory Limit : 524288/262144K (Java/Other) ...

  3. jquery中ajax方法返回的三种数据类型:text、json、xml;

    1.当dataType:"text"时,处理页面用的是DBDA类中的Strquery()方法,所以返回的数据是下面这样的,所以要对返回来的数据用split根据“|”和“^”来分割, ...

  4. 关于 MAXScript 逐行写入文本

    官方帮助文档FileStream Values部分有相关介绍. fn format_txt filepath filetext = ( if doesFileExist filepath == tru ...

  5. 使用 .bash_profile与.bashrc修改字符集

    发现终端设置为UTF8显示以后 svn打印终端就一直乱码, 是用户字符集的原因 有人建议 修改.bashrc 有人建议修改~/.bash_profile 搜索了下区别 /etc/profile:此文件 ...

  6. 线下线上对接的一种思路(本地erp与线上电子商务平台对接)

    目前很多公司都希望本地的ERP能够与线上的电子商务平台进行对接. 但是很多的线下ERP系统商不愿意修改代码来做相应的对接,或者觉得太话费成本. 而对于企业本身,又会有很多的特殊需求. 下面略述一家进口 ...

  7. (C#) Interview Questions.

    (Note: Most are collected from Internet. 绝大部分内容来自互联网) 1. What's the difference between Hashtable and ...

  8. 使用C#和.NET的原因

    早在2000年6月,微软公布.NET之后不久,Ximian公司诞生了一个开源项目叫做Mono,运行在Linux环境下面的C#编译器和.NET Framework.十年后,在2011年,Ximian的创 ...

  9. HTC Vive开发笔记之UI Guideline

    本文转自HTC官方论坛,原址https://www.htcvive.com/cn/forum/chat.php?mod=viewthread&tid=1641&extra=page=1 ...

  10. 将表里的数据批量生成INSERT语句的存储过程

    有时候,我们需要将某个表里的数据全部导出来,迁移到另一个相同结构的库中,这里可以采取一个简便的方法,通过一个存储过程批量导出数据并生成SQL语句,非常方便.存储过程如下: )) as begin de ...