How to Shorten the Paper
. Remember: you are writing for an expert. Cross out all that is trivial or routine. . Avoid repetition: do not repeat the assumptions of a theorem at the beginning of its proof, or a complicated conclusion at the end of the proof. Do not repeat the assumptionos of a previous theorem in the statement of a next one (instand, write e.g."Under the hypotheses of Theorem 1 with f replaced by g,....."). Do not repeat the same formula -- use a label instead. . Check all formulas: is each of them necessary?
General rules
We denote by $\mathbb{R}$ the set of all real numbers.
We have the following lemma.
The following lemma will be useful.
...... the following inequality is satisfied:
Phrases you can cross out
We denote by $\mathbb{R}$ the set of all real numbers.
We have the following lemma.
The following lemma will be useful.
...... the following inequality is satisfied:
Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix $\varepsilon>$ Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix $x\in X$ Let us first observe that $\Rrightarrow$ First observe that We will first compute $\Rrightarrow$ We first compute Hence we have $x=$ $\Rrightarrow$ Hence $x=$ Hence it follows that $x=$ $\Rrightarrow$ Hence $x=$ Taking into account () $\Rrightarrow$ By () By virtue of () $\Rrightarrow$ By () By relation () $\Rrightarrow$ By () In the interval $[,]$ $\Rrightarrow$ in $[,]$ There exists a function $f\in C(X)$ $\Rrightarrow$ There exists $f\in C(X)$ For every point $p\in M$ $\Rrightarrow$ For every $p\in M$ It is defined by the formula $F(x)=......$ $\Rrightarrow$ It is defined by $F(x)=......$ Theorem and Theorem $\Rrightarrow$ Theorems and This follows from (),(),() and () $\Rrightarrow$ This follows from ()-() For details see [],[] and [] $\Rrightarrow$ For details see []-[] The derivative with respect to $t$ $\Rrightarrow$ The $t-$ derivative A function of class $C^$ $\Rrightarrow$ A $C^$ function For arbitrary $x$ $\Rrightarrow$ For all $x$ (For every $x$) In the case $n=$ $\Rrightarrow$ For $n=$ This leads to a constradiction with the maximality of $f$ $\Rrightarrow$ .....,contrary to the maximality of $f$ Applying Lemma we conclude that $\Rrightarrow$ Lemma shows that ......, which completes the proof $\Rrightarrow$ .......$\Box$
Phrases you can shorten
Let $\varepsilon$ be an arbitrary but fixed positive number $\Rrightarrow$ Fix $\varepsilon>0$
Let us fix arbitrarily $x\in X$ $\Rrightarrow$ Fix $x\in X$
Let us first observe that $\Rrightarrow$ First observe that
We will first compute $\Rrightarrow$ We first compute
Hence we have $x=1$ $\Rrightarrow$ Hence $x=1$
Hence it follows that $x=1$ $\Rrightarrow$ Hence $x=1$
Taking into account (4) $\Rrightarrow$ By (4)
By virtue of (4) $\Rrightarrow$ By (4)
By relation (4) $\Rrightarrow$ By (4)
In the interval $[0,1]$ $\Rrightarrow$ in $[0,1]$
There exists a function $f\in C(X)$ $\Rrightarrow$ There exists $f\in C(X)$
For every point $p\in M$ $\Rrightarrow$ For every $p\in M$
It is defined by the formula $F(x)=......$ $\Rrightarrow$ It is defined by $F(x)=......$
Theorem 2 and Theorem 5 $\Rrightarrow$ Theorems 2 and 5
This follows from (4),(5),(6) and (7) $\Rrightarrow$ This follows from (4)-(7)
For details see [3],[4] and [5] $\Rrightarrow$ For details see [3]-[5]
The derivative with respect to $t$ $\Rrightarrow$ The $t-$ derivative
A function of class $C^2$ $\Rrightarrow$ A $C^2$ function
For arbitrary $x$ $\Rrightarrow$ For all $x$ (For every $x$)
In the case $n=5$ $\Rrightarrow$ For $n=5$
This leads to a constradiction with the maximality of $f$ $\Rrightarrow$ .....,contrary to the maximality of $f$
Applying Lemma 1 we conclude that $\Rrightarrow$ Lemma 1 shows that ......, which completes the proof $\Rrightarrow$ .......$\Box$
How to Shorten the Paper的更多相关文章
- 激光打印机的Color/paper, Xerography介绍
Color Basic 看见色彩三要素: 光源,物体,视觉 加色色彩模型:R,G,B 多用于显示器 减色色彩模型:C,M,Y,K 多用于打印复印 Paper 东亚地区常用A系列标准用纸,在多功能一体机 ...
- Facebook Paper使用的第三方库
Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/ace Appirater 用户评分组件 ht ...
- paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...
- #Deep Learning回顾#之2006年的Science Paper
大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...
- Tips for writing a paper
Tips for writing a paper 1. Tips for Paper Writing 2.• Before you write a paper • When you are writi ...
- How to (seriously) read a scientific paper
How to (seriously) read a scientific paper Adam Ruben’s tongue-in-cheek column about the common diff ...
- How to read a scientific paper
How to read a scientific paper Nothing makes you feel stupid quite like reading a scientific journal ...
- 如何写好一篇高质量的paper
http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...
- paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他
在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...
随机推荐
- [NOIP2011] mayan游戏(搜索+剪枝)
题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...
- Linux设计准则
计算机体系结构: 运算器 控制器 存储器,内存,编址 输出设备 输入设备 Linux内核功能: 进程管理内存管理文件系统网络功能硬件驱动安全机制 Linux的基本原则: 1.由目的单一的小程序组成: ...
- ZFS(一):ZFS在Debian GNU/Linux上的安装
以下内容翻译自https://pthree.org/2012/04/17/install-zfs-on-debian-gnulinux/,并附有原文,由于是第一次翻译,如有任何翻译不恰当之处,欢迎指出 ...
- Python decode与encode
字符串在Python内部的表示是unicode编码(8-bit string),因此,在做编码转换时,通常需要以unicode作为中间编码,即先将其他编码的字符串解码(decode)成unicod ...
- python 面向对象学习
------Python面向对象初 下面写一个类的简单实用,以便方便理解类 #python 3.5环境,解释器在linux需要改变 #阅读手册查询readme文件 #作者:S12-陈金彭 class ...
- oracle11g安装和基本的使用-转载
一.测试操作系统和硬件环境是否符合,我使用的是win2008企业版.下面的都是step by step看图就ok了,不再详细解释. 请留意下面的总的设置步骤:--------------------- ...
- Python filter,map,lambda,reduce,列表解析
filter用法 filter(func,seq) 将seq的元素逐一代入func,通过func的返回值来判断是保留还是过滤 >>> def foo(x): return x> ...
- finder的隐藏文件&IOS虚拟机地址
在终端里输入下面命令即可让它们显示出来. defaults write com.apple.finder AppleShowAllFiles -bool true 如果想恢复隐藏,可以用这个命令: ...
- Django base view
class django.views.generic.base.View 它是基类的基类,其它View基类都是从这继承的. 官例: from django.http import HttpRespon ...
- 自动化测试selenium+java 第三章
import java.sql.Time;import java.util.concurrent.TimeUnit; import org.junit.BeforeClass;import org.o ...