洛谷 P1031 均分纸牌 Label:续命模拟QAQ
题目描述
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
①9②8③17④6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入输出格式
输入格式:
键盘输入文件名。文件格式:
N(N 堆纸牌,1 <= N <= 100)
A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出格式:
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。
输入输出样例
4
9 8 17 6
3
代码
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
int aver,N,a[],cnt;
int main(){
// freopen("01.in","r",stdin);
scanf("%d",&N);
for(int i=;i<=N;i++){
scanf("%d",&a[i]);
aver+=a[i];
}
aver/=N;
for(int i=;i<=N;i++){
if(a[i]<aver){
++cnt;
int block=aver-a[i];
a[i+]-=block;
a[i]=aver;
}
else if(a[i]>aver){
++cnt;
int block=a[i]-aver;
a[i+]+=block;
a[i]=aver;
}
}
printf("%d",cnt);
return ;
}
洛谷 P1031 均分纸牌 Label:续命模拟QAQ的更多相关文章
- 洛谷P1031 均分纸牌
P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌 ...
- 洛谷 P1031 均分纸牌
P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...
- 洛谷 P1031 均分纸牌【交叉模拟】
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...
- [NOIP2002] 提高组 洛谷P1031 均分纸牌
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...
- 洛谷——P1031 均分纸牌
https://www.luogu.org/problem/show?pid=1031#sub 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以 ...
- (Java实现) 洛谷 P1031 均分纸牌
题目描述 有NN堆纸牌,编号分别为 1,2,-,N1,2,-,N.每堆上有若干张,但纸牌总数必为NN的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为11堆上取的纸牌,只能移到编号为 ...
- 洛谷P1368 均分纸牌(加强版)
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 洛谷P1368 均分纸牌(加强版) [2017年6月计划 数论14]
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 洛谷 P1015 回文数 Label:续命模拟QAQ
题目描述 若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数. 例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数. 又如:对于10进制数 ...
随机推荐
- AIX 配置网卡
ifconfig en0 10.1.1.100 netmask 255.255.255.0 alias
- Pyqt QListWidget 展示系统环境变量
今天学习了下Pyqt的 QListWidget 控件 我们先看下这个图片 这张图片就是典型的listWidget效果,我们今天就仿这样布局新建个ListWidget 在网上找了个关于QListWidg ...
- Linux中带颜色输出的printf使用简介(\033)
昨晚懒得FQ, 百度了一下linux中printf输出颜色的方法, 结果搜索结果质量让人倍感伤心. 越来越不想用bd了.还是Google一下吧, 手气真好, 第一个内容就很清楚明了! 我还是直接简单翻 ...
- windows7下安装php的imagick和imagemagick扩展教程
这篇文章主要介绍了windows7下安装php的imagick和imagemagick扩展教程,同样也适应XP操作系统,Win8下就没测试过了,需要的朋友可以参考下 最近的PHP项目中,需要用到切图和 ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并
D. Vika and Segments Vika has an infinite sheet of squared paper. Initially all squares are whit ...
- 汇编指令CLI/STI
CLI禁止中断发生STL允许中断发生 这两个指令只能在内核模式下执行,不可以在用户模式下执行:而且在内核模式下执行时,应该尽可能快的恢复中断,因为CLI会禁用硬件中断,若长时间禁止中断会影响其他动作的 ...
- Linux学习笔记(13)权限管理
1 ACL权限 (1)简介和开启方式 ACL(Access Control List)权限的目的是在提供传统的owner.group.others的read.write.execute权限之外的局部权 ...
- 时间和地域三级联动选择器(Android-PickerView-master)
先附上下载和效果展示地址 https://github.com/saiwu-bigkoo/Android-PickerView 之后说一下程序依赖后会遇到的问题Error:(2, 0) Plugin ...
- CentOS升级Python 2.6到2.7
查看python的版本 python -V Python 2.6.6 下载Python Python-2.7.8.tar.xz 链接:http://pan.baidu.com/s/1i4 ...
- asp.net权限控制配置web.config
项目下 有三个文件夹 A,B,C 验正方式是 Forms 验正 我要设置他们的访问权限为, A,匿名可访问 B,普通用户授权后才能访问 C,只允许管理员访问 <configuration> ...