题目描述

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。

移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N=4,4 堆纸牌数分别为:

①9②8③17④6

移动3次可达到目的:

从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入输出格式

输入格式:

键盘输入文件名。文件格式:

N(N 堆纸牌,1 <= N <= 100)

A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出格式:

输出至屏幕。格式为:

所有堆均达到相等时的最少移动次数。

输入输出样例

输入样例#1:

4
9 8 17 6
输出样例#1:

3

代码

 #include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
int aver,N,a[],cnt;
int main(){
// freopen("01.in","r",stdin);
scanf("%d",&N);
for(int i=;i<=N;i++){
scanf("%d",&a[i]);
aver+=a[i];
}
aver/=N;
for(int i=;i<=N;i++){
if(a[i]<aver){
++cnt;
int block=aver-a[i];
a[i+]-=block;
a[i]=aver;
}
else if(a[i]>aver){
++cnt;
int block=a[i]-aver;
a[i+]+=block;
a[i]=aver;
}
}
printf("%d",cnt);
return ;
}

洛谷 P1031 均分纸牌 Label:续命模拟QAQ的更多相关文章

  1. 洛谷P1031 均分纸牌

    P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌 ...

  2. 洛谷 P1031 均分纸牌

    P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...

  3. 洛谷 P1031 均分纸牌【交叉模拟】

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  4. [NOIP2002] 提高组 洛谷P1031 均分纸牌

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  5. 洛谷——P1031 均分纸牌

    https://www.luogu.org/problem/show?pid=1031#sub 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以 ...

  6. (Java实现) 洛谷 P1031 均分纸牌

    题目描述 有NN堆纸牌,编号分别为 1,2,-,N1,2,-,N.每堆上有若干张,但纸牌总数必为NN的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为11堆上取的纸牌,只能移到编号为 ...

  7. 洛谷P1368 均分纸牌(加强版)

    P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...

  8. 洛谷P1368 均分纸牌(加强版) [2017年6月计划 数论14]

    P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...

  9. 洛谷 P1015 回文数 Label:续命模拟QAQ

    题目描述 若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数. 例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数. 又如:对于10进制数 ...

随机推荐

  1. AIX 配置网卡

    ifconfig en0 10.1.1.100 netmask 255.255.255.0 alias

  2. Pyqt QListWidget 展示系统环境变量

    今天学习了下Pyqt的 QListWidget 控件 我们先看下这个图片 这张图片就是典型的listWidget效果,我们今天就仿这样布局新建个ListWidget 在网上找了个关于QListWidg ...

  3. Linux中带颜色输出的printf使用简介(\033)

    昨晚懒得FQ, 百度了一下linux中printf输出颜色的方法, 结果搜索结果质量让人倍感伤心. 越来越不想用bd了.还是Google一下吧, 手气真好, 第一个内容就很清楚明了! 我还是直接简单翻 ...

  4. windows7下安装php的imagick和imagemagick扩展教程

    这篇文章主要介绍了windows7下安装php的imagick和imagemagick扩展教程,同样也适应XP操作系统,Win8下就没测试过了,需要的朋友可以参考下 最近的PHP项目中,需要用到切图和 ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

  6. 汇编指令CLI/STI

    CLI禁止中断发生STL允许中断发生 这两个指令只能在内核模式下执行,不可以在用户模式下执行:而且在内核模式下执行时,应该尽可能快的恢复中断,因为CLI会禁用硬件中断,若长时间禁止中断会影响其他动作的 ...

  7. Linux学习笔记(13)权限管理

    1 ACL权限 (1)简介和开启方式 ACL(Access Control List)权限的目的是在提供传统的owner.group.others的read.write.execute权限之外的局部权 ...

  8. 时间和地域三级联动选择器(Android-PickerView-master)

    先附上下载和效果展示地址 https://github.com/saiwu-bigkoo/Android-PickerView 之后说一下程序依赖后会遇到的问题Error:(2, 0) Plugin ...

  9. CentOS升级Python 2.6到2.7

    查看python的版本 python -V Python 2.6.6 下载Python   Python-2.7.8.tar.xz      链接:http://pan.baidu.com/s/1i4 ...

  10. asp.net权限控制配置web.config

    项目下 有三个文件夹 A,B,C 验正方式是 Forms 验正 我要设置他们的访问权限为, A,匿名可访问 B,普通用户授权后才能访问 C,只允许管理员访问 <configuration> ...