题意:有n个点,问其中某一对点的距离最小是多少

分析:分治法解决问题:先按照x坐标排序,求解(left, mid)和(mid+1, right)范围的最小值,然后类似区间合并,分离mid左右的点也求最小值

POJ 3714

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> const int N = 1e5 + 5;
const double INF = 1e100;
struct Point {
double x, y;
bool flag;
bool operator < (const Point &rhs) const {
return x < rhs.x;
}
};
Point point[N*2];
int idy[N*2];
int n; bool cmp_y(int i, int j) {
return point[i].y < point[j].y;
} double squ(double x) {
return x * x;
} double get_dist(Point &a, Point &b) {
if (a.flag == b.flag) {
return INF;
}
return sqrt (squ (a.x - b.x) + squ (a.y - b.y));
} double min_dist(int left, int right) {
if (left == right) {
return INF;
}
else if (right - left == 1) {
return get_dist (point[left], point[right]);
} else {
int mid = left + right >> 1;
double ret = std::min (min_dist (left, mid), min_dist (mid + 1, right));
if (ret == 0) {
return ret;
}
int endy = 0;
for (int i=mid; i>=left&&point[mid].x-point[i].x<=ret; --i) {
idy[endy++] = i;
}
for (int i=mid+1; i<=right&&point[i].x-point[mid+1].x<=ret; ++i) {
idy[endy++] = i;
}
std::sort (idy, idy+endy, cmp_y);
for (int i=0; i<endy; ++i) {
for (int j=i+1; j<endy&&point[j].y-point[i].y<ret; ++j) {
ret = std::min (ret, get_dist (point[i], point[j]));
}
}
return ret;
}
} int main() {
int T; scanf ("%d", &T);
while (T--) {
scanf ("%d", &n);
for (int i=0; i<2*n; ++i) {
scanf ("%lf%lf", &point[i].x, &point[i].y);
if (i < n) {
point[i].flag = false;
} else {
point[i].flag = true;
}
}
std::sort (point, point+2*n);
printf ("%.3f\n", min_dist (0, 2 * n - 1));
} return 0;
}

HDOJ 1007

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> const int N = 1e5 + 5;
const double INF = 1e100;
struct Point {
double x, y;
};
Point point[N], py[N];
int n; bool cmp_x(const Point &a, const Point &b) {
return a.x < b.x;
}
bool cmp_y(const Point &a, const Point &b) {
return a.y < b.y;
} double squ(double x) {
return x * x;
} double get_dist(Point &a, Point &b) {
return sqrt (squ (a.x - b.x) + squ (a.y - b.y));
} double min_dist(int left, int right) {
if (left + 1 == right) {
return get_dist (point[left], point[right]);
} else if (left + 2 == right) {
return std::min (get_dist (point[left], point[left+1]),
std::min (get_dist (point[left], point[right]), get_dist (point[left+1], point[right])));
} else {
int mid = left + right >> 1;
double ret = std::min (min_dist (left, mid), min_dist (mid + 1, right));
int cnt = 0;
for (int i=mid; i>=left&&point[mid].x-point[i].x<=ret; --i) {
py[cnt++] = point[i];
}
for (int i=mid+1; i<=right&&point[i].x-point[mid+1].x<=ret; ++i) {
py[cnt++] = point[i];
}
std::sort (py, py+cnt, cmp_y);
for (int i=0; i<cnt; ++i) {
for (int j=i+1; j<cnt&&py[j].y-py[i].y<ret; ++j) {
ret = std::min (ret, get_dist (py[i], py[j]));
}
}
return ret;
}
} int main() {
while (scanf ("%d", &n) == 1) {
if (!n) {
break;
}
for (int i=0; i<n; ++i) {
scanf ("%lf%lf", &point[i].x, &point[i].y);
}
std::sort (point, point+n, cmp_x);
printf ("%.2f\n", min_dist (0, n - 1) / 2);
} return 0;
}

  

最近点对问题 POJ 3714 Raid && HDOJ 1007 Quoit Design的更多相关文章

  1. Hdoj 1007 Quoit Design 题解

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  2. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  3. (洛谷 P1429 平面最近点对(加强版) || 洛谷 P1257 || Quoit Design HDU - 1007 ) && Raid POJ - 3714

    这个讲的好: https://phoenixzhao.github.io/%E6%B1%82%E6%9C%80%E8%BF%91%E5%AF%B9%E7%9A%84%E4%B8%89%E7%A7%8D ...

  4. 杭电OJ——1007 Quoit Design(最近点对问题)

    Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...

  5. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  7. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. poj 3714 Raid(平面最近点对)

    Raid Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7473   Accepted: 2221 Description ...

  9. POJ 3714 Raid(计算几何の最近点对)

    Description After successive failures in the battles against the Union, the Empire retreated to its ...

随机推荐

  1. [Android Pro] Gradle Tips#1-tasks

    reference to : http://trickyandroid.com/gradle-tip-1-tasks/ http://blog.csdn.net/lzyzsd/article/deta ...

  2. windows一个目录下最大文件数目

    对于FAT16文件系统, 可以保存的文件体积最大值是 4 GB - 1 byte (2^32 bytes - 1 byte): 卷的最大体积是4GB:每个卷上最多可以保存的文件数量是65,536个 ( ...

  3. Swift - 让程序挂起后,能在后台继续运行任务

    1,程序的挂起和退出 由于iOS设备资源有限.当用户点击了home键,或者另一个应用程序启动了.那么原先那个程序便进入后台被挂起,不是退出,只是停止执行代码,同时它的内存被锁定.当应用程序恢复时,它会 ...

  4. Mac OS

    defaults write com.apple.finder AppleShowAllFiles -bool true 此命令显示隐藏文件defaults write com.apple.finde ...

  5. (1)第一个ASP.NET Web API

      Install-Package Microsoft.AspNet.WebApi . Global.asax protected void Application_Start() { AreaReg ...

  6. Delphi之DLL知识学习2---静态链接和动态链接

    静态连接 静态链接是指Delphi 编译器把要调用的函数和过程编译成可执行代码.函数的代码可存留在应用程序的 .dpr文件或一单元中.当链接用户的应用程序时,这些函数与过程便成为最终的可执行文件的一部 ...

  7. SQLAlchemy Core插入数据,有好几种方法呢

    看是一次插入一条还是多条, 看是数据表名是变量还是常量, 操作还是很灵活的, 主要看哪种顺手顺眼啦. #coding=utf-8 from datetime import datetime from ...

  8. WIN10 新建ORACLE实例

    1 管理员身份进入CMD环境,执行DBCA命令,在弹出窗口的引导中,完成实例创建 2 如果在创建过程中没有选择适当的字符集(最好采用默认字符集),如下图所示,在进入PLSQL DEVELOPER的时候 ...

  9. CodeForces 371D Vessels(树状数组)

    树状数组,一个想法是当往p注水时,认为是其容量变小了,更新时二分枚举,注意一些优化. #include<cstdio> #include<iostream> #include& ...

  10. Visual Studio Code 1.0发布:100+语言,300+pull请求,1000+扩展

    在第一个预览版发布一年后,微软发表了Visual Studio Code 1.0. 在//BUILD 2015大会上,微软宣布,他们的一个团队需要几个月来创建Visual Studio Code的第一 ...