传送门

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Special Judge

Problem Description
There is a river on the Cartesian coordinate system,the river is flowing along the x-axis direction.

Rower Bo is placed at $(0,a)$ at first.He wants to get to origin $(0,0)$ by boat.Boat speed relative to water is $v_1$,and the speed of the water flow is $v_2$.He will adjust the direction of $v_1$ to origin all the time.

Your task is to calculate how much time he will use to get to origin.Your answer should be rounded to four decimal places.

If he can't arrive origin anyway,print "Infinity" (without quotation marks).

Input
There are several test cases. (no more than 1000)

For each test case,there is only one line containing three integers $a,v_1,v_2$.

$0\le a\le 100, 0\le v1,v2,\le 100, a,v_1,v_2$ are integers

Output
For each test case,print a string or a real number.

If the absolute error between your answer and the standard answer is no more than $10^{-4}$, your solution will be accepted.

Sample Input

2 3 3
2 4 3

Sample Output

Infinity
1.1428571429

Source
2016 Multi-University Training Contest 3


这题在现场做的时候试图直接解微分方程,但微分方程推出来却发现没法解,但题解上说,直接解微分方程可以搞,可能是我推微分方程的姿势不对,有待研究,微积分快忘干净了,好惨。

我现场的思路是:

考虑直角坐标下的运动学方程:

\begin{align} \frac{dx}{dt} &= v_2-\frac{x}{\sqrt{x^2+y^2}}v_1  \\       \frac{dy}{dt} &= -\frac{y}{\sqrt{x^2+y^2}}v_1  \end{align}

注意到如果将运动学方程写成直角坐标$(r,\theta)$的形式会更方便:

由$x=r\cos{\theta}, y=r\sin{\theta}, r=\sqrt{x^2+y^2}$, 上面两式可化成:

\begin{align} \cos{\theta} \, \dot{r} -\dot{\theta}\sin{\theta} \, r &= v_2-v_1\cos{\theta} \\ \sin{\theta} \, \dot{r} + \cos{\theta} \, \dot{\theta} r &= -v_1\sin{\theta} \end{align}

由上述两方程可解出$\dot{r}, r$:

\begin{align} \dot{r} &= v_2\cos{\theta}-v_1 \\  r &= -\frac{v_2\sin{\theta}}{\dot{\theta}}   \end{align}

将上两式代入

\begin{align}  \dot{r}=\frac{dr}{dt}   \end{align}

\begin{align}  \frac{v_2\sin{\theta} \, \ddot{\theta}}{\dot{\theta}^2}-v_2\cos{\theta} = v_2\cos{\theta}-v_1  \end{align}

要从这个微分方程解出$\theta=\theta(t)$比较困难,我目前还解不出。

这个微分方程是可解的:

\[ \frac{d\theta}{dt} = f \]

\[ \frac{d^2\theta}{dt^2} = \frac{df}{dt} =\frac{df}{d\theta}\frac{d\theta}{dt} = \frac{df}{d\theta}f \]

将上两式代入原方程,得

\[ \frac{df}{f} = \frac{2v_2\cos{\theta} - v_1}{v_2 \sin{\theta}} d\theta = (2\cot{\theta} -\frac{v_1}{v_2}\csc{\theta}) d\theta \]

积分得

\[ \ln{f} = 2\ln{| \sin{\theta} |} - \frac{v_1}{v_2}\ln{| \csc{\theta} -\cot{\theta} |} +C_1 \]

\[ f(\theta) = C_2\frac{\sin^2{\theta}} {|\csc{\theta}-\cot{\theta}|^{ \frac {v_1} {v2} } } \]

但到这一步貌似也没什么用,就算把右边的关于$\theta$的积分积出来,还要再求反函数才能得到$\theta (t)$。再次好惨。。

可能如果选择解$r=r(t)$会简单一点,再试试吧。。逃。。。


题解上给出的做法是:

\[ \frac{dr}{dt} = v_2\cos{\theta}-v_1 \]

\[ \frac{dx}{dt} = v_2-\frac{x}{\sqrt{x^2+y^2}}v_1 = v_2 - v_1 \cos{\theta}\]

实际上第一式($\frac{dr}{dt}$的表达式)可直接写出来,不需要像上面那样去推导。由于题目已说明船相对于水流的速度时刻指向原点,那么自然有$ \frac{dr}{dt} = v_2\cos{\theta}-v_1 $

两式对$t$积分,从时刻$0$积到(到达原点的)时刻$T$,这两个定积分就写成:

\[ 0-a = - v_1T + v_2\int_{0}^{T}{\cos{\theta} \, \text{d}\theta}  \]

\[0-0 = v_2T - v_1 \int_{0}^{T}{\cos{\theta} \, \text{d}\theta} \]

这样便可解出

\[ T = \frac{v_1a}{v_1^2 - v_2^2} \]

从而不能到达原点的情况是 $a>0$且$v_1\le v_2$。

HDU 5761 Rower Bo的更多相关文章

  1. hdu 5761 Rower Bo 物理题

    Rower Bo 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5761 Description There is a river on the Ca ...

  2. hdu 5761 Rower Bo 微分方程

    Rower Bo Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  3. 【数学】HDU 5761 Rower Bo

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5761 题目大意: 船在(0,a),船速v1,水速v2沿x轴正向,船头始终指向(0,0),问到达(0, ...

  4. hdu 5761 Rowe Bo 微分方程

    1010 Rower Bo 首先这个题微分方程强解显然是可以的,但是可以发现如果设参比较巧妙就能得到很方便的做法. 先分解v_1v​1​​, 设船到原点的距离是rr,容易列出方程 \frac{ dr} ...

  5. hdu-5761 Rower Bo(数学)

    题目链接: Rower Bo Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 131072/131072 K (Java/Others ...

  6. HDU 5761 物理题

    Rower Bo Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  7. HDU 5752 Sqrt Bo (数论)

    Sqrt Bo 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5752 Description Let's define the function f ...

  8. HDU 5753 Permutation Bo (推导 or 打表找规律)

    Permutation Bo 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5753 Description There are two sequen ...

  9. HDU 5762 Teacher Bo (暴力)

    Teacher Bo 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5762 Description Teacher BoBo is a geogra ...

随机推荐

  1. 软件工程(DBSD2016) Git Review

    说明:任何问题请在评论区说明,会集中更新回复. 连连看组 源码: git clone https://git.coding.net/jx8zjs/llk.git 提交日志 一共有20次commit日志 ...

  2. 极简Word排版示例(以Word2013为例)

    文档标题 第一行写下文档的名字,居中,微软雅黑字体,三号 章节标题 每一章的标题单独一行,光标选中这行,设置为标题1 每一节的标题单独一行,光标选中这行,设置为标题2 全部章节标题设置完毕后,下一步 ...

  3. 用 Linux自带的logrotate 来管理日志

    大家可能都有管理日志的需要,比如定时压缩日志,或者当日志超过一定大小时就自动分裂成两个文件等.最近就接到这样一个小任务.我们的程序用的是C语言,用log4cpp的library来实现日志记录.但是问题 ...

  4. apache 多端口配置和虚拟主机配置

    1 打开httpd.conf文件 2 添加端口监听 (找到Lisen 80 在后面添加 Listen 端口号 如Listen 1112) port =>你的端口 project_name=> ...

  5. 【JQuery】 ajax 无效的JSON基元

    [如题]个人理解就是 你向传数据[josn格式]了,但是后台接受确不是json格式的 数据, 贴段代码 var strJson = '{ "usercode": "123 ...

  6. JS iframe元素和父页面元素互访

    说明:以下内容来自互联网 [1]子页面取得父页面的dom对象   parent.window.$('#id').val("");   [2]父页面取得子页面的对象   $(wind ...

  7. __getattr__与__getattribute__

    class Foo: def __init__(self,x): self.x=x def __getattr__(self, item): print("执行的是我----->&qu ...

  8. Openstack Basic Networking 翻译

    自己翻译,加强理解.并学习英文和写作. 英文地址:http://docs.openstack.org/networking-guide/intro_basic_networking.html 目录: ...

  9. Eclipse+Maven创建webapp项目<一>

    Eclipse+Maven创建webapp项目<一> 1.开启eclipse,右键new——>other,如下图找到maven project 2.选择maven project,显 ...

  10. Java 接口中常量的思考

    接口中不允许方法的实现,而抽象类是允许方法实现的及定义变量的,因此我们可以看出接口是比抽象类更高层次的抽象.如果接口可以定义变量,但是接口中的方法又都是抽象的,在接口中无法通过行为(例如set()方法 ...