传送门

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Special Judge

Problem Description
There is a river on the Cartesian coordinate system,the river is flowing along the x-axis direction.

Rower Bo is placed at $(0,a)$ at first.He wants to get to origin $(0,0)$ by boat.Boat speed relative to water is $v_1$,and the speed of the water flow is $v_2$.He will adjust the direction of $v_1$ to origin all the time.

Your task is to calculate how much time he will use to get to origin.Your answer should be rounded to four decimal places.

If he can't arrive origin anyway,print "Infinity" (without quotation marks).

Input
There are several test cases. (no more than 1000)

For each test case,there is only one line containing three integers $a,v_1,v_2$.

$0\le a\le 100, 0\le v1,v2,\le 100, a,v_1,v_2$ are integers

Output
For each test case,print a string or a real number.

If the absolute error between your answer and the standard answer is no more than $10^{-4}$, your solution will be accepted.

Sample Input

2 3 3
2 4 3

Sample Output

Infinity
1.1428571429

Source
2016 Multi-University Training Contest 3


这题在现场做的时候试图直接解微分方程,但微分方程推出来却发现没法解,但题解上说,直接解微分方程可以搞,可能是我推微分方程的姿势不对,有待研究,微积分快忘干净了,好惨。

我现场的思路是:

考虑直角坐标下的运动学方程:

\begin{align} \frac{dx}{dt} &= v_2-\frac{x}{\sqrt{x^2+y^2}}v_1  \\       \frac{dy}{dt} &= -\frac{y}{\sqrt{x^2+y^2}}v_1  \end{align}

注意到如果将运动学方程写成直角坐标$(r,\theta)$的形式会更方便:

由$x=r\cos{\theta}, y=r\sin{\theta}, r=\sqrt{x^2+y^2}$, 上面两式可化成:

\begin{align} \cos{\theta} \, \dot{r} -\dot{\theta}\sin{\theta} \, r &= v_2-v_1\cos{\theta} \\ \sin{\theta} \, \dot{r} + \cos{\theta} \, \dot{\theta} r &= -v_1\sin{\theta} \end{align}

由上述两方程可解出$\dot{r}, r$:

\begin{align} \dot{r} &= v_2\cos{\theta}-v_1 \\  r &= -\frac{v_2\sin{\theta}}{\dot{\theta}}   \end{align}

将上两式代入

\begin{align}  \dot{r}=\frac{dr}{dt}   \end{align}

\begin{align}  \frac{v_2\sin{\theta} \, \ddot{\theta}}{\dot{\theta}^2}-v_2\cos{\theta} = v_2\cos{\theta}-v_1  \end{align}

要从这个微分方程解出$\theta=\theta(t)$比较困难,我目前还解不出。

这个微分方程是可解的:

\[ \frac{d\theta}{dt} = f \]

\[ \frac{d^2\theta}{dt^2} = \frac{df}{dt} =\frac{df}{d\theta}\frac{d\theta}{dt} = \frac{df}{d\theta}f \]

将上两式代入原方程,得

\[ \frac{df}{f} = \frac{2v_2\cos{\theta} - v_1}{v_2 \sin{\theta}} d\theta = (2\cot{\theta} -\frac{v_1}{v_2}\csc{\theta}) d\theta \]

积分得

\[ \ln{f} = 2\ln{| \sin{\theta} |} - \frac{v_1}{v_2}\ln{| \csc{\theta} -\cot{\theta} |} +C_1 \]

\[ f(\theta) = C_2\frac{\sin^2{\theta}} {|\csc{\theta}-\cot{\theta}|^{ \frac {v_1} {v2} } } \]

但到这一步貌似也没什么用,就算把右边的关于$\theta$的积分积出来,还要再求反函数才能得到$\theta (t)$。再次好惨。。

可能如果选择解$r=r(t)$会简单一点,再试试吧。。逃。。。


题解上给出的做法是:

\[ \frac{dr}{dt} = v_2\cos{\theta}-v_1 \]

\[ \frac{dx}{dt} = v_2-\frac{x}{\sqrt{x^2+y^2}}v_1 = v_2 - v_1 \cos{\theta}\]

实际上第一式($\frac{dr}{dt}$的表达式)可直接写出来,不需要像上面那样去推导。由于题目已说明船相对于水流的速度时刻指向原点,那么自然有$ \frac{dr}{dt} = v_2\cos{\theta}-v_1 $

两式对$t$积分,从时刻$0$积到(到达原点的)时刻$T$,这两个定积分就写成:

\[ 0-a = - v_1T + v_2\int_{0}^{T}{\cos{\theta} \, \text{d}\theta}  \]

\[0-0 = v_2T - v_1 \int_{0}^{T}{\cos{\theta} \, \text{d}\theta} \]

这样便可解出

\[ T = \frac{v_1a}{v_1^2 - v_2^2} \]

从而不能到达原点的情况是 $a>0$且$v_1\le v_2$。

HDU 5761 Rower Bo的更多相关文章

  1. hdu 5761 Rower Bo 物理题

    Rower Bo 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5761 Description There is a river on the Ca ...

  2. hdu 5761 Rower Bo 微分方程

    Rower Bo Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  3. 【数学】HDU 5761 Rower Bo

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5761 题目大意: 船在(0,a),船速v1,水速v2沿x轴正向,船头始终指向(0,0),问到达(0, ...

  4. hdu 5761 Rowe Bo 微分方程

    1010 Rower Bo 首先这个题微分方程强解显然是可以的,但是可以发现如果设参比较巧妙就能得到很方便的做法. 先分解v_1v​1​​, 设船到原点的距离是rr,容易列出方程 \frac{ dr} ...

  5. hdu-5761 Rower Bo(数学)

    题目链接: Rower Bo Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 131072/131072 K (Java/Others ...

  6. HDU 5761 物理题

    Rower Bo Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  7. HDU 5752 Sqrt Bo (数论)

    Sqrt Bo 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5752 Description Let's define the function f ...

  8. HDU 5753 Permutation Bo (推导 or 打表找规律)

    Permutation Bo 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5753 Description There are two sequen ...

  9. HDU 5762 Teacher Bo (暴力)

    Teacher Bo 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5762 Description Teacher BoBo is a geogra ...

随机推荐

  1. 《细细品味Hive》系列课程

    Hi,博友: 我是解耀伟,笔名是虾皮,最近我在极客学院录制Hive系列教程,也是督促自己学习一种方式,可以把自己的学习积累有方向,星期天也能做点有意义的事情.在做每一期的过程中,需要找资料,总结,先自 ...

  2. c++基础 explicit

    c++的构造函数也定义了一个隐式转换 explicit只对构造函数起作用,用来抑制隐式转换 看一个小例子 新建一个头文件 #ifndef CMYSTRING_H #define CMYSTRING_H ...

  3. github上传

    创建全局的name和email 1.创建ssh(使用命令)$ssh-keygen -t rsa -C xxxxx@gmail.com(注册github时的email)2.在github中添加ssh 登 ...

  4. 为 Xamarin.Forms 做个跑马灯控件

    前段时间,私下用 Xamarin.Forms 做了个商业项目的演示版.很多被国内App玩坏了的控件/效果,XF上都没有或是找不到对应的实现,没有办法只能亲自上阵写了几个,效果还行,就是有BUG. 这个 ...

  5. js的几种排序

    转载:http://www.jb51.net/article/81520.htm 一.冒泡排序 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

  6. Myeclipse 2015 stable 2.0 完美破解方法

    2015-08-21  以前写了一篇<Myeclipse 2015 stable 1.0 完美破解方法>,现 在跟新一下Myeclipse 2015 stable 2.0 破解方法,此方法 ...

  7. LXC的介绍

    LXC又名Linux container,是一种虚拟化的解决方案,这种是内核级的虚拟化.(主流的解决方案Xen ,KVM, LXC) 介绍 通过namespace进行资源的隔离,Gust1下的进程与G ...

  8. SVN——配置和安装

    SVN安装步骤: 所有安装文件下载地址:http://pan.baidu.com/s/1bocNTDl 一.安装01----VisualSVN-Server-3.4.2-x64.msi 文件 直接下一 ...

  9. 控制器中获取store

    在Controller中要获取View中的选中值我用[javascript] view plaincopyprint?var cmp = Ext.ComponentQuery.query('weldl ...

  10. 如何在移动端app中应用字体图标icon fonts (转)

    原文: http://www.cnblogs.com/willian/p/4166757.html?utm_source=tuicool&utm_medium=referral How to ...