Goldbach's Conjecture
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 35214   Accepted: 13493

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:

Every even number greater than 4 can be 
written as the sum of two odd prime numbers.

For example:

8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
20 = 3 + 17 = 7 + 13. 
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

Input

The input will contain one or more test cases. 
Each test case consists of one even integer n with 6 <= n < 1000000. 
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

Sample Input

8
20
42
0

Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37
题目大意:给出一个6-1000000的偶整数n,判断是不是两个素数的和,如果是,按照要求的格式输出这两个素数,如果不是或者是n是奇数,输出“Goldbach's conjecture is wrong.”;输入0时退出程序。
这道题需要用到素数表,不过不用打印,只需要标记下谁是素数即可,所以只需要将打印素数表的代码稍微一修改就可以了。
 #include<iostream>
#include<math.h>
using namespace std;
int prime[]={};
int top=;
void print_prime()
{
int i;
double x=sqrt(1001000.0);
int n=int(x);
//cout<<sqrt(MAXN)<<endl;
//cout<<n<<endl;
for( i=; i<n; i++)
{
if(prime[i]==)
{
for(int j = i*i; j<; j+=i)
prime[j]=;
// prime[++top]=i;
}
}
/*for(i=n; i<MAXN; i++)
if(prime[i]==0)
prime[++top]=i;*/
}
int main()
{
print_prime();
int n;
while()
{
cin>>n;
if(n==)break;
if(n%==)
{
cout<<"Goldbach's conjecture is wrong."<<endl;
continue;
}
bool flag=true;
int i;
for(i=;i<=n/;i=i+)
{
if(prime[i]==&&prime[n-i]==)
{
cout<<n<<" = "<<i<<" + "<<n-i<<endl;
flag=false;
break;
}
}
if(flag==true)cout<<"Goldbach's conjecture is wrong."<<endl;
}
return ;
}

poj 2262【素数表的应用---判断素数】【哈希】的更多相关文章

  1. hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10

    题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...

  2. POJ 2262 Goldbach&#39;s Conjecture(素数相关)

    POJ 2262 Goldbach's Conjecture(素数相关) http://poj.org/problem?id=2262 题意: 给你一个[6,1000000]范围内的偶数,要你将它表示 ...

  3. LightOJ-1259-Goldbach`s Conjecture-素数打表+判断素数对数

    Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathemat ...

  4. <编程>比较两种素数表生成算法+计算程序运行时间+通过CMD重定向测试程序

    最近学习加密算法,需要生成素数表,一开始使用简单的循环,从2开始判断.代码如下: #include<iostream> #include<cstdio> #include< ...

  5. PAT Advanced 1059 Prime Factors (25) [素数表的建⽴]

    题目 Given any positive integer N, you are supposed to find all of its prime factors, and write them i ...

  6. 快速判断素数 --Rabin-Miller算法

    以前我在判断素数上一直只会 sqrt(n) 复杂度的方法和所谓的试除法(预处理出sqrt(n)以内的素数,再用它们来除). (当然筛选法对于判断一个数是否是素数复杂度太高) 现在我发现其实还有一种方法 ...

  7. 算法改进 | java语言中判断素数

    参考文章:http://blog.csdn.net/kp_liu/article/details/37569507 http://blog.csdn.net/huang_miao_xin/articl ...

  8. 2java判断素数

    package com.test; import java.math.*;import java.util.Scanner; public class test222 { /** * @param a ...

  9. filter运行出现 <filter object at 0x000001B68F052828> 判断素数

    刚接触filter时  运行总是出现<filter object at 0x000001B68F052828>  得不到想要的数据 后来发现是因为filter的结果是一个数组 需要 lis ...

随机推荐

  1. BZOJ 1019: [SHOI2008]汉诺塔

    Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着 ...

  2. 读书笔记-JVM

    局部变量表(虚拟机栈中的一部分)在编译期完成分配,运行期不会再改变大小: 每个方法对应一个栈帧(存储局部变量表.操作数栈.动态链接.方法出口等),栈帧被存储到虚拟机栈中,每个线程对应一个虚拟机栈,方法 ...

  3. struts2 复杂参数封装

    1.1.1    Struts2中封装复杂类型的数据: 封装到List集合: 页面: 商品名称:<input type="text" name="products[ ...

  4. 【转】mysql的cardinality异常,导致索引不可用

    转自:http://ourmysql.com/archives/1343 前段时间,一大早上,就收到报警,警告php-fpm进程的数量超过阈值.最终发现是一条sql没用到索引,导致执行数据库查询慢了, ...

  5. Failed to issue method call: Unit httpd.service failed to load: No such file or directory.

    centos7修改httpd.service后运行systemctl restart httpd.service提示 Failed to issue method call: Unit httpd.s ...

  6. STL vector按多字段值排序

    #include <iostream> #include <vector> #include <string> #include <algorithm> ...

  7. problem-record-mysql

    #!/bin/bash # # Update_Problem - updates problem record in database ################################ ...

  8. FileUpload控件使用初步

    FileUpload控件使用初步   FileUpload控件使用初步: 1.实现文件上传 protected void btnSubmit_click(object sender, EventArg ...

  9. Luncence .Net 使用

    public partial class Form1 : Form { public Form1() { InitializeComponent(); } //标准分词 private void bu ...

  10. mybatis 的if else

    <update id="update" parameterType="XXX">         update XX set YY          ...