4271: Love Me, Love My Permutation

Description

Given a permutation of n: a[0], a[1] ... a[n-1], ( its elements range from 0 to n-1, For example: n=4, one of the permutation is 2310) we define the swap operation as: choose two number i, j ( 0 <= i < j <= n-1 ), take a[i] out and then insert a[i] to the back of a[j] of the initial permutation to get a new permutation :a[0], a[1], ..., a[i-1], a[i+1], a[i+2] ... a[j-1], a[j], a[i], a[j+1], ..., a[n-1]. For example: let n = 5 and the permutation be 03142, if we do the swap operation be choosing i = 1, j = 3, then we get a new permutation 01432, and if choosing i = 0, j = 4, we get 31420.

Given a confusion matrix of size n*n which only contains 0 and 1 (ie. each element of the matrix is either 0 or 1), the confusion value of a permutation a[0],a[1], ..., a[n-1] can be calculated by the following function:

int confusion()
{
int result = 0;
for(int i = 0;i < n-1; i++)
for(int j = i+1; j < n; j++)
{
result = result + mat[a[i]][a[j]];
}
return result;
}

Besides, the confusion matrix satisfies mat[i][i] is 0 ( 0 <= i < n) and mat[i][j] + mat[j][i] = 1 ( 0 <= i < n, 0 <= j < n, i != j ) given the n, the confusion matrix mat, you task is to find out how many permutations of n satisfies: no matter how you do the swap function on the permutation(only do the swap function once), its confusion value does not increase.

Input

The first line is the number of cases T(1 <= T <= 5), then each case begins with a integer n (2 <= n <= 12), and the next n line forms the description of the confusion matrix (see the sample input).

Output

For each case , if there is no permutation which satisfies the condition, just print one line “-1”, or else, print two lines, the first line is a integer indicating the number of the permutations satisfy the condition, next line is the Lexicographic smallest permutation which satisfies the condition.

Sample Input

2
2
0 1
0 0
3
0 0 0
1 0 1
1 0 0

Sample Output

1
0 1
1
1 2 0 题解:DFS
从后向前搜索,放进去的一位要和后面的每一段(n~n-1,n~n-2...n~0)保持1的个数大于0的个数,如果成立,则这一位可以放这个数,在向前继续搜索。
因为只能前面的数插入到后面,所以不需要考虑新加进去的数会不会对后面已经排好的短造成影响。也是这个原因要从后向前搜索。 AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define M(a,b) memset(a,b,sizeof(a))
using namespace std; int ans[25];
int num[25][25];
int out[25];
int n;
int ct; void print()
{
//cout<<'?'<<endl;
int flag = 1;
for(int i = n-1;i>=0;i--)
{
if(ans[i]<out[i]) {flag = 0; break;}
if(ans[i]>out[i]) break;
}
if(!flag)
for(int i = n-1;i>=0;i--)
out[i] = ans[i];
ct++;
} void dfs(int pos)
{
if(pos>=n)
{
print();
return;
}
if(pos == 0)
{
for(int i = 0;i<n;i++)
{
ans[pos] = i;
dfs(pos+1);
}
}
else
{
for(int i = 0;i<n;i++)
{
int cnt = 0;
int flag = 1;
for(int j = pos-1;j>=0;j--)
{ if(num[i][ans[j]]==0) {flag = 0;break;}
cnt += num[i][ans[j]];
//cout<<i<<' '<<ans[j]<<' '<<num[i][ans[j]]<<' '<<cnt<<endl;
if(cnt<0) {flag = 0;break;}
}
if(flag) {ans[pos] = i; dfs(pos+1);}
}
}
return;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
ct = 0;
scanf("%d",&n);
M(num,0);
M(ans,0);
M(out,0x3f);
for(int i = 0;i<n;i++)
for(int j = 0;j<n;j++)
{
scanf("%d",&num[i][j]);
if(i == j) num[i][j] = 0;
else if(num[i][j]==0)
num[i][j] = -1;
}
dfs(0);
if(ct==0) {puts("-1"); continue;}
printf("%d\n",ct);
for(int j = n-1;j>0;j--)
printf("%d ",out[j]);
printf("%d\n",out[0]);
}
return 0;
}

  

 

soj4271 Love Me, Love My Permutation (DFS)的更多相关文章

  1. Tree and Permutation dfs hdu 6446

    Problem Description There are N vertices connected by N−1 edges, each edge has its own length.The se ...

  2. codeforces 691D D. Swaps in Permutation(dfs)

    题目链接: D. Swaps in Permutation time limit per test 5 seconds memory limit per test 256 megabytes inpu ...

  3. codeforces 691D Swaps in Permutation DFS

    这个题刚开始我以为是每个交换只能用一次,然后一共m次操作 结果这个题的意思是操作数目不限,每个交换也可以无限次 所以可以交换的两个位置连边,只要两个位置连通,就可以呼唤 然后连通块内排序就好了 #in ...

  4. HNU Joke with permutation (深搜dfs)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=13341&courseid=0 Joke with pe ...

  5. 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. hdu6446 Tree and Permutation 2018ccpc网络赛 思维+dfs

    题目传送门 题目描述:给出一颗树,每条边都有权值,然后列出一个n的全排列,对于所有的全排列,比如1 2 3 4这样一个排列,要算出1到2的树上距离加2到3的树上距离加3到4的树上距离,这个和就是一个排 ...

  7. codeforces 285 D. Permutation Sum 状压 dfs打表

    题意: 如果有2个排列a,b,定义序列c为: c[i] = (a[i] + b[i] - 2) % n + 1 但是,明显c不一定是一个排列 现在,给出排列的长度n (1 <= n <= ...

  8. leetcode 784. Letter Case Permutation——所有BFS和DFS的题目本质上都可以抽象为tree,这样方便你写代码

    Given a string S, we can transform every letter individually to be lowercase or uppercase to create ...

  9. 【HDOJ6628】permutation 1(dfs)

    题意:求1到n的排列中使得其差分序列的字典序为第k大的原排列 n<=20,k<=1e4 思路:爆搜差分序列,dfs时候用上界和下界剪枝 #include<bits/stdc++.h& ...

随机推荐

  1. 数据结构算法C语言实现(五)---2.3重新定义线性链表及其基本操作

    一.简述 ...由于链表在空间的合理利用上和插入.删除时不需要移动等的优点,因此在很多场合下,它是线性表的首选存储结构.然而,它也存在着实现某些基本操作,如求线性表的长度时不如顺序存储结构的缺点:另一 ...

  2. jQuery知识点总结(第六天)

    今天工作繁忙,晚上又和所谓的'朋友',吃了自助烧烤. 但我内心是很抗拒的,不知为了什么,竟然稀奇古怪的答应了下来,竟要去吃饭.我向来不喜欢去凑热闹,特别是和志趣不投的人在一起吃,对方所说的话,自己根本 ...

  3. Apache配置HTTPS功能

    apache配置https 一.yum 安装openssl和openssl-devel,httpd-devel 二.生成证书(也可以从公司的证书颁发机构获取): #建立服务器密钥 openssl ge ...

  4. POJ3928 Pingpong(统计比 K 小的个数 + 树状数组)

    Ping pong Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2691   Accepted: 996 Descript ...

  5. HTTP,TCP/IP协议

    本文转自cnblogs:http://www.cnblogs.com/xhwy/archive/2012/03/03/2378293.html 一.概述 1.1 TCP   HTTP   UDP: 都 ...

  6. oracle--知识点汇总1

    同义词: -- e是scott.emp表的临时别名 select e.* from (select * from scott.emp) e; --创建私有同义词 create synonym myem ...

  7. 在Android上实现使用Facebook登录(基于Facebook SDK 3.5)

    准备工作: 1.       Facebook帐号,国内开发者需要一个vpn帐号(网页可以浏览,手机可以访问) 2.       使用Facebook的SDK做应用需要一个Key Hashes值. 2 ...

  8. PHP 基本语法,字符串处理,正则

    <?php //注释语法 /*多行注释*/  输出语法 Echo "hello","worle";         //可以输出多个字符串 Print   ...

  9. SQL Server编程(03)自定义存储过程

    存储过程是一组预编译的SQL语句,它可以包含数据操纵语句.变量.逻辑控制语句等. 存储过程允许带参数: 输入参数:可以在调用时向存储过程传递参数,此类参数可用来向存储过程中传入值(可以有默认值) 输出 ...

  10. Jsonp类

    public class JsonpResult : JsonResult { public JsonpResult() { this.Callback = "callback"; ...