LG1290 欧几里德的游戏
https://www.luogu.com.cn/problem/P1290
博弈论游戏,用到mod。
辗转相除法的过程,会构成n种状态。
到达最后一个状态就赢了。
对于一次过程如果div>1那么只要把该状态下的最后一个留给对方,自己始终是占据状态的初始位,那么一定是赢的。
第二种情况,如果div==1,那么只有一种状态,那么必然要把状态拱手相让。
对于a_i>1,....=1,a_j>1,如果说在这一过程里,j-i为偶数,那么中间会转移奇数次状态,那么a_j和a_{i+1}状态不同,那么只要把下一状态交给对方即可,全部取走即可。如果j-i为奇数,那么中间转移偶数次状态,a_j和a_{i+1}d的状态相同,按照原计划分配即可,保证始终为初状态。
所有对于以上两种情况都有对应的方案可以胜利。问题就在于谁先拿到>1.
而如果是连续的==1,则在不断的变换状态,只要不停的交换即可。
1 #include<bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 ll m,n,k;
5 int main()
6 {
7 ll c;
8 scanf("%lld",&c);
9 while(c--)
10 {
11 bool flag=true;
12 k=0;
13 scanf("%lld%lld",&m,&n);
14 if(m<n) m^=n,n^=m,m^=n;
15 while(m/n==1&&m%n)
16 {
17 ll t=m%n;
18 m=n;
19 n=t;
20 k=!k;
21 }
22 if(!k) printf("Stan wins\n");
23 else printf("Ollie wins\n");
24 }
25 return 0;
26 }
LG1290 欧几里德的游戏的更多相关文章
- P1290 欧几里德的游戏
P1290 欧几里德的游戏 原本不想写的,但细节有些多qwq,还是放上吧. 假设a严格大于b 当a<b*2时,只有一种方法往下走:否则就可以有多种方法,并且一定至少有一种可以使自己必胜,因为可以 ...
- P1290 【欧几里德的游戏】
P1290 [欧几里德的游戏] 真·做题全凭感性 从题目中很容易看出 这是一道\(Gcd\)的题 同时又结合了一些略略的博弈论(丢下锅跑真爽 我们看,辗转相减的\(a,b\)一共只有两种情况 \(a- ...
- 洛谷——P1290 欧几里德的游戏
P1290 欧几里德的游戏 题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的 ...
- luoguP1290 欧几里德的游戏 [博弈论]
题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...
- LUOGU P1290 欧几里德的游戏
题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...
- P1290 欧几里德的游戏(洛谷)
欧几里德的两个后代 Stan 和 Ollie 正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数 M 和 N,从 Stan 开始,从其中较大的一个数,减去较小的数的正整数倍,当然, ...
- 洛谷P1290 欧几里德的游戏
题目:https://www.luogu.org/problemnew/show/P1290 只要出现n>=2*m,就可以每次把较大的数控制在较小的数的一倍与二倍之间,则控制了对方的走法: 每次 ...
- 题解 洛谷P1290 【欧几里德的游戏】
这题没必要那么麻烦,只需要推理一下即可: 假设我们有两个数\(x,y\),先把\(x\)设为较大值,\(y\)设为较小值.现在分成三种情况: \(1\).若两数为倍数关系,操作的一方赢. \(2\). ...
- LGOJ1290 欧几里德的游戏
题目链接 P1290 and UVA10368 (双倍经验[虽然标签差距很有趣]) 题目大意 给定两个数\(n\)和\(m\),每次操作可以用较大数减去较小数的正整数倍,不可以减成负数. 先获得一个\ ...
随机推荐
- 前端浅谈-协议相关(DNS协议)
从应用层到实体层的协议太多了,我们并不能一一涉及,目前来说就打算整理可能会与前端相关的协议. 前端面试常会问到一个问题-"从输入一个url到页面渲染经历了哪些过程".这其实是一个相 ...
- SpringCloud微服务实战——搭建企业级开发框架(三十三):整合Skywalking实现链路追踪
Skywalking是由国内开源爱好者吴晟(原OneAPM工程师)开源并提交到Apache孵化器的产品,它同时吸收了Zipkin/Pinpoint/CAT的设计思路,支持非侵入式埋点.是一款基于分 ...
- Table.RemoveLastN删除后面N….RemoveLastN(Power Query 之 M 语言)
数据源: "姓名""基数""个人比例""个人缴纳""公司比例""公司缴纳"&qu ...
- shell 文件读取批量处理
cat ./redis-keys.txt | while read myline do echo ${myline} /usr/local/bin/redis-cli -h 000.00.00.000 ...
- MIUI12.5扫码之后无法连接MIUI+,显示连接失败
设置-应用设置-应用管理-小米互联通信服务(如果没有找到,进行搜索即可)-清除数据 重新扫码连接就可以连上了 (感觉不怎么样,不知道是不是我网卡,用起来卡卡的...)
- 页面调用百度地图但是使用了https证书之后不显示
首先百度地图使用的都是http请求链接,但是安装了证书之后会觉得这个http不安全,所以默认请求失败 这时候我们在请求头添加 <meta http-equiv="Content-Sec ...
- JAVA判断URL地址是否非法
/** * 判断请求url是否非法 * @param url * @return */ public static boolean isValidRequestUri(String url) { if ...
- 【LeetCode】754. Reach a Number 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学 日期 题目地址:https://leetcod ...
- 【LeetCode】201. Bitwise AND of Numbers Range 解题报告(Python)
[LeetCode]201. Bitwise AND of Numbers Range 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode.com/prob ...
- 【剑指Offer】栈的压入、弹出队列 解题报告(Python)
[剑指Offer]栈的压入.弹出队列 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...