【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))
算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点。
题目描述:
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
解法一:暴力递归
不解释,先暴力搞一下。(时间复杂度O(n^3),不行)
1 class Solution {
2 public:
3 int l(vector<int>& nums) { // 返回以nums[0]开头的最长递增序列长度
4 if (nums.size() < 2)
5 return nums.size();
6 int max_len = 1;
7 for (int i = 1; i < nums.size(); ++ i)
8 if (nums[i] > nums[0]) {
9 vector<int> t{nums.begin() + i, nums.end()};
10 max_len = max(max_len, l(t) + 1);
11 }
12 return max_len;
13 }
14 int lengthOfLIS(vector<int>& nums) { // 所有序列遍历一遍
15 int max_len = 1;
16 for (i = 0; i < nums.size(); ++ i) {
17 vector<int> t(nums.begin() + i, nums.end());
18 max_len = max(max_len, l(t));
19 }
20 return max_len;
21 }
22 };
小优化一下,记忆化搜索。(还是不行,时间复杂度还是太高)
1 class Solution {
2 public:
3 int l(unordered_map<int, int>& map, vector<int>& nums) {
4 if (nums.size() < 2)
5 return nums.size();
6 if (map.find(nums[0]) != map.end()) // 如果已经知道了以某个数开头的元素的最长序列数,直接返回
7 return map[nums[0]];
8 int max_len = 1;
9 for (int i = 1; i < nums.size(); ++ i)
10 if (nums[i] > nums[0]) {
11 vector<int> t{nums.begin() + i, nums.end()};
12 max_len = max(max_len, l(map, t) + 1);
13 }
14 map[nums[0]] = max_len; // 记录以某个数开头的最长递增序列长度
15 return max_len;
16 }
17 int lengthOfLIS(vector<int>& nums) {
18 int max_len = 1;
19 unordered_map<int, int> map; // 哈希表,<开头的数,最长递归序列长度>
20 for (int i = 0; i < nums.size(); ++ i) {
21 vector<int> t(nums.begin() + i, nums.end());
22 max_len = max(max_len, l(map, t));
23 }
24 return max_len;
25 }
26 };
解法二:动态规划
看来暴力是不行滴,还得动态规划。(时间复杂度O(n^2),AC了)
1 class Solution {
2 public:
3 int lengthOfLIS(vector<int>& nums) {
4 vector<int> dp(nums.size(), 0); // 记录以nums[i]为结尾的最长递增子序列长度
5 for (int i = 1; i < nums.size(); ++ i)
6 for (int j = 0; j < i; ++ j) // 找一个最长的递增序列,接到它后面
7 if (nums[j] < nums[i])
8 dp[i] = max(dp[i], dp[j] + 1);
9 return *max_element(dp.begin(), dp.end()) + 1;
10 }
11 };
解法三:动态规划 + 二分查找
动态规划方法是可行的,但是O(n^2)的时间复杂度还是较高,使用二分查找方法可以进一步优化。(时间复杂度O(nlogn),大提升)
1 class Solution {
2 public:
3 int lengthOfLIS(vector<int>& nums) {
4 vector<int> dp(1, *nums.begin()); // 维护一个数组,用来存放最长的递增子序列
5 int left = 0, right = 0, mid = 0;
6 for (int i = 1; i < nums.size(); ++ i) { // 遍历一遍nums寻找每个元素在最长子序列中的插入位置
7 if (nums[i] > *(dp.end() - 1)) { // 如果当前元素比序列中所有元素都大,直接插到末尾
8 dp.push_back(nums[i]);
9 continue;
10 }
11 left = -1; // 否则的话,替换掉序列中第一个大于等于它的元素,这样可以保证得到最长的递增序列
12 right = dp.size();
13 while (left + 1 != right) {
14 mid = (left + right) / 2;
15 if (dp[mid] >= nums[i])
16 right = mid;
17 else
18 left = mid;
19 }
20 dp[right] = nums[i];
21 }
22 return dp.size();
23 }
24 };
【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))的更多相关文章
- Leetcode 673.最长递增子序列的个数
最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[ ...
- Leetcode 300.最长上升子序列
最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的 ...
- [LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)
https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fan ...
- Java实现 LeetCode 673 最长递增子序列的个数(递推)
673. 最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, ...
- Java实现 LeetCode 300 最长上升子序列
300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,10 ...
- leetcode 300最长上升子序列
用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...
- Leetcode——300. 最长上升子序列
题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101], ...
- LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)
题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...
- LeetCode 300——最长上升子序列
1. 题目 2. 解答 2.1. 动态规划 我们定义状态 state[i] 表示以 nums[i] 为结尾元素的最长上升子序列的长度,那么状态转移方程为: \[state[i] = max(state ...
随机推荐
- MVVMLight学习笔记(三)---数据双向绑定
一.概述 本文与其说是MVVMLight框架的学习,不如说是温故一下数据的双向绑定. 二.Demo 建立好MVVMLight框架后的Wpf工程后,建立一个Model.Model.View以及ViewM ...
- JavaWeb 三大器--Listener、Filter 和Interceptor 总结
说明:web.xml的加载顺序是:[Context-Param]->[Listener]->[Filter]->[Servlet],而同个类型之间的实际程序调用的时候的顺序是根据对应 ...
- JMeter结果树响应数据中文乱码
打开apache-jmeter-2.11\bin\jmeter.properties文件,搜索"encoding"关键字,找到如下配置: # The encoding to be ...
- ORB_SLAM2 Tracking流程
- Zookeeper:进大厂不得不学的分布式协同利器!
大家好,我是冰河~~ 最近,有很多小伙伴让我更新一些Zookeeper的文章,正好也趁着清明假期把之前自己工作过程当中总结的Zookeeper知识点梳理了一番,打算写一个[精通Zookeeper系列] ...
- NOIP模拟38:b
这是T2. 一个容斥(其实也可以欧拉反演做,但是我不会). 首先开一个桶,记录第i行的j有多少个. 然后枚举1-\(maxn\),枚举他的值域内的倍数,记录倍数在第i行有多少个,将个数 ...
- Git 系列教程(2)- Git 安装
前言 直接复制官网的教程了,不对自己百度吧,不然就参考下我的几篇文章 Linux安装Git(源码安装) https://www.cnblogs.com/poloyy/p/12186802.html 在 ...
- 使用Redis Stream来做消息队列和在Asp.Net Core中的实现
写在前面 我一直以来使用redis的时候,很多低烈度需求(并发要求不是很高)需要用到消息队列的时候,在项目本身已经使用了Redis的情况下都想直接用Redis来做消息队列,而不想引入新的服务,kafk ...
- Oracle体系结构二
- SQL注入与burPsuit工具介绍
sql注入原理 原理:用户输入不可控,用户输入导致了sql语义发生了改变 用户输入不可控:网站不能控制普通用户的输入 sql语义发生变化: 动态网页介绍: 网站数据请求 脚本语言:解释类语言,如,后端 ...