P7323-[WC2021]括号路径【并查集,启发式合并】
正题
题目链接:https://www.luogu.com.cn/problem/P7323
题目大意
给出\(n\)个点的一张有向图。每个边\((u,v,w)\)表示\(u->v\)有一个类型\(w\)的左括号边,\(v->u\)有一个类型\(w\)的右括号边。
求图中有多少点对满足它们之间有一条合法的括号序列路径
\(1\leq n\leq 3\times 10^5,1\leq m\leq 6\times 10^5,1\leq k\leq n\)
解题思路
一个显然的结论是如果两个点之间有合法路径那么连一条边的话,那么最后出来的是一个团。
因为\(f(u,v)=1\Rightarrow f(v,u)=1\)(路径翻转),\(f(u,v)=f(v,z)=1\Rightarrow f(u,z)=1\)(路径拼接)。
考虑怎么求出这些团。假设我们现在有一个团\(x\),它连接向团外有两条类型一样的边,那么就代表我们可以把这两条边连接的节点(或者团)合并入这个团中。
然后合并的时候我们因为又要处理类型一样的边,所以我们用启发式合并枚举小的那个暴力丢进大的里面就好了。
时间复杂度\(O(n\log^2 n)\),用线段树合并可以做到\(O(n\log n)\)(也许?
code
#include<cstdio>
#include<cstring>
#include<queue>
#include<map>
#define mp(x,y) make_pair(x,y)
using namespace std;
const int N=3e5+10;
int n,m,k,fa[N],cnt[N];
long long ans;
queue<pair<int,int> >q;
map<int,int> G[N];
int find(int x)
{return (fa[x]==x)?x:(fa[x]=find(fa[x]));}
map<int,int>::iterator it;
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++){
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
swap(x,y);
if(G[x][w])q.push(mp(G[x][w],y));
else G[x][w]=y;
}
for(int i=1;i<=n;i++)fa[i]=i;
while(!q.empty()){
int x=q.front().first,y=q.front().second;
x=find(x);y=find(y);q.pop();
if(x==y)continue;
if(G[x].size()<G[y].size())swap(x,y);
for(it=G[y].begin();it!=G[y].end();it++){
int w=it->first,z=it->second;
if(G[x][w])q.push(mp(G[x][w],z));
else G[x][w]=z;
}
fa[y]=x;
}
for(int i=1;i<=n;i++)cnt[find(i)]++;
for(int i=1;i<=n;i++)ans+=1ll*cnt[i]*(cnt[i]-1)/2ll;
printf("%lld\n",ans);
return 0;
}
P7323-[WC2021]括号路径【并查集,启发式合并】的更多相关文章
- [HDU 3712] Fiolki (带边权并查集+启发式合并)
[HDU 3712] Fiolki (带边权并查集+启发式合并) 题面 化学家吉丽想要配置一种神奇的药水来拯救世界. 吉丽有n种不同的液体物质,和n个药瓶(均从1到n编号).初始时,第i个瓶内装着g[ ...
- [BZOJ 4668]冷战(带边权并查集+启发式合并)
[BZOJ 4668]冷战(并查集+启发式合并) 题面 一开始有n个点,动态加边,同时查询u,v最早什么时候联通.强制在线 分析 用并查集维护连通性,每个点x还要另外记录tim[x],表示x什么时间与 ...
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- BZOJ 4668: 冷战 并查集启发式合并/LCT
挺好想的,最简单的方法是并查集启发式合并,加暴力跳父亲. 然而,这个代码量比较小,比较好写,所以我写了 LCT,更具挑战性. #include <cstdio> #include < ...
- BZOJ 3673: 可持久化并查集(可持久化并查集+启发式合并)
http://www.lydsy.com/JudgeOnline/problem.php?id=3673 题意: 思路: 可持久化数组可以用可持久化线段树来实现,并查集的查询操作和原来的一般并查集操作 ...
- Codeforces 1166F 并查集 启发式合并
题意:给你一张无向图,无向图中每条边有颜色.有两种操作,一种是询问从x到y是否有双彩虹路,一种是在x到y之间添加一条颜色为z的边.双彩虹路是指:如果给这条路径的点编号,那么第i个点和第i - 1个点相 ...
- 洛谷 P7323 - [WC2021] 括号路径(启发式合并)
题面传送门 emmmm----怎么评价这个题嘛...感觉纯论算法,此题根本谈不上难题,不过 WC 时候太智障只拿了个 48pts 就走人了.总之,技不如人,甘拜吓疯( 首先要注意到几件事情: 如果 \ ...
- [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- 2018.08.21 bzoj4668: 冷战(并查集+启发式合并)
传送门 可以发现需要维护连通性和两点连通时间. 前者显然是并查集的常规操作,关键就在于如何维护两点的连通时间. 然后会想到这个时候不能用路径压缩了,因为它会破坏原本树形集合的结构,因此可以启发式按si ...
随机推荐
- Json序列化更新好友列表
一.概述 使用Newtonsoft.Json开源库进行序列化 二.代码 using Newtonsoft.Json; using System; using System.Collections.Ge ...
- mybatis传入参数为0被误认为是空字符串的解决方法
在mbatis中使用Xml配置sql语句时,出现了这样一个问题.当我传入的参数为0去做判断时,mybatis会把参数0当成是空字符串去判断而引起查询结果错误 所以在做项目时一定要注意,用到MyBati ...
- Flink 运行时架构
参考链接:https://blog.csdn.net/dajiangtai007/article/details/88575553 1.Flink 运行时架构 Flink 运行时架构主要包含几个部分: ...
- 刷题-力扣-337. 打家劫舍 III
337. 打家劫舍 III 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/house-robber-iii 著作权归领扣网络所有.商 ...
- call bind apply的区别
call() 和apply()的第一个参数相同,就是指定的对象.这个对象就是该函数的执行上下文. call()和apply()的区别就在于,两者之间的参数. call()在第一个参数之后的 后续所有参 ...
- HCNP Routing&Switching之OSPF LSA更新规则和路由汇总
前文我们了解了OSPF外部路由类型以及forwarding address字段的作用,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15225673.html: ...
- Mysql常用基础命令操作
常见操作命令:1.连接Mysql (客户端工具NaviCat.phpMyAdmin.MySQL-Front)格式: mysql -h 主机地址 -u用户名 -p用户密码(1)连接到本机上的MYSQL. ...
- 【HMS Core 6.0全球上线】Toolkit,您的智能辅助编程好帮手
HMS Core 6.0已于7月15日全球上线.本次版本中,华为HMS Toolkit向广大开发者推出了智能辅助编程助手SmartCoder,帮助开发者轻松高效地集成HMS Core,开发新功能,创建 ...
- Linux上合理设置网卡的MTU值
MTU:是网络的最大传输单元,通信术语:最大传输单元(Maximum Transmission Unit,MTU)是指一种通信协议的某一层上面所能通过的最大数据包大小(以字节为单位).最大传输单元这个 ...
- mysql触发器实时检测一条语句进行备份删除
问题描述:用户有一个这样一个需求,在一张表里会不时出现 "违规" 字样的字段,需要在出现这个字段的时候,把整行的数据删掉.这是个采集任务,如果发现有"违规"字样 ...