Codeforces 题面传送门 & 洛谷题面传送门

一道(绝对)偏简单的 D1E,但是我怕自己过若干年(大雾)忘了自己的解法了,所以过来水篇题解(

首先考虑怎么暴力地解决这个问题,不难发现我们每一步肯定会贪心,贪心地跳到所有经过当前点的公交线路中另一端最浅的位置,直到到达两点的 \(\text{LCA}\) 为止。不难发现上述过程可以倍增优化,具体来说我们记 \(nxt_{i,j}\) 表示从 \(i\) 开始走 \(2^j\) 步最浅能够到达哪里,那么我们可以一面树剖求出经过每个点能够到达深度最浅的节点,一面倍增往上跳知道跳到深度 \(<\text{LCA}(u,v)\) 的位置为止。

不过上述算法有一个漏洞,就是在我们到达 \(\text{LCA}(u,v)\) 的前一步到达的点 \(u',v'\) 很可能已经可以通过某条公交线相连了,此时我们大可不必再花费 \(2\) 的代价跳到 \(\text{LCA}(u,v)\),直接一步就可以搞定,答案需减一。因此考虑再倍增求出 \(u,v\) 到达 \(\text{LCA}(u,v)\) 之前上一步到达的节点 \(u',v'\),不难发现,由于 \(u',v'\) 之间不存在祖先关系,因此 \(u',v'\) 存在公交线相连的充要条件是存在某个公交线,两个端点分别在 \(u',v'\) 子树内,这个可以 DFS 序+离线二维数点/在线主席树求出。

时间复杂度 \(n\log^2n\),但显然有复杂度更优秀/更好写的 implementation,比方说树剖换成 set 启发式合并代码可以少三十多行,换成线段树合并可以少一个 \(\log\)。

我竟然写这么短的题解,我怕不是精神不正常(大雾

代码(这种题我都能码 171 行……zz 这题我实现得跟 sh*t 一样):

const int MAXN=2e5;
const int LOG_N=18;
const int INF=0x3f3f3f3f;
int n,m,qu,qn,hd[MAXN+5],to[MAXN+5],nxt[MAXN+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int siz[MAXN+5],wson[MAXN+5],dep[MAXN+5],fa[MAXN+5][LOG_N+2];
int top[MAXN+5],dfn[MAXN+5],tim=0,edt[MAXN+5];
void dfs1(int x){
siz[x]=1;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];dep[y]=dep[x]+1;
dfs1(y);siz[x]+=siz[y];
if(siz[y]>siz[wson[x]]) wson[x]=y;
}
}
void dfs2(int x,int tp){
top[x]=tp;dfn[x]=++tim;if(wson[x]) dfs2(wson[x],tp);
for(int e=hd[x];e;e=nxt[e]) if(to[e]!=fa[x][0]&&to[e]!=wson[x])
dfs2(to[e],to[e]);
edt[x]=tim;
}
int getlca(int x,int y){
while(top[x]^top[y]){
if(dep[top[x]]<dep[top[y]]) swap(x,y);
x=fa[top[x]][0];
} if(dep[x]<dep[y]) swap(x,y);
return y;
}
struct node{int l,r,val,lz;} s[MAXN*4+5];
void pushup(int k){s[k].val=min(s[k<<1].val,s[k<<1|1].val);}
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;s[k].lz=INF;if(l==r) return s[k].val=INF,void();
int mid=l+r>>1;build(k<<1,l,mid);build(k<<1|1,mid+1,r);pushup(k);
}
void pushdown(int k){
if(s[k].lz!=INF){
chkmin(s[k<<1].val,s[k].lz);chkmin(s[k<<1|1].val,s[k].lz);
chkmin(s[k<<1].lz,s[k].lz);chkmin(s[k<<1|1].lz,s[k].lz);
s[k].lz=INF;
}
}
void modify(int k,int l,int r,int x){
if(l<=s[k].l&&s[k].r<=r){
chkmin(s[k].val,x);chkmin(s[k].lz,x);
return;
} pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) modify(k<<1,l,r,x);
else if(l>mid) modify(k<<1|1,l,r,x);
else modify(k<<1,l,mid,x),modify(k<<1|1,mid+1,r,x);
pushup(k);
}
int query(int k,int x){
if(s[k].l==s[k].r) return s[k].val;pushdown(k);
pushdown(k);int mid=s[k].l+s[k].r>>1;
if(x<=mid) return query(k<<1,x);
else return query(k<<1|1,x);
}
void jumpath(int x,int y,int v){
while(top[x]^top[y]){
if(dep[top[x]]<dep[top[y]]) swap(x,y);
modify(1,dfn[top[x]],dfn[x],v);
x=fa[top[x]][0];
} if(dep[x]<dep[y]) swap(x,y);
modify(1,dfn[y],dfn[x],v);
}
int get_kanc(int x,int k){
for(int i=LOG_N;~i;i--) if(k>>i&1) x=fa[x][i];
return x;
}
int nt[MAXN+5][LOG_N+2],cnt[MAXN+5],ans[MAXN+5],mark[MAXN+5];
int step(int x,int d){
if(dep[x]<=d) return 0;
if(dep[nt[x][LOG_N]]>d) return -1;int cnt=0;
for(int i=LOG_N;~i;i--) if(dep[nt[x][i]]>d) x=nt[x][i],cnt|=(1<<i);
return cnt+(dep[x]>d);
}
int get_kstp(int x,int k){
for(int i=LOG_N;~i;i--) if(k>>i&1) x=nt[x][i];
return x;
}
vector<int> pts[MAXN+5];
struct qry{
int x,y,t,id;
bool operator <(const qry &rhs) const{
return x<rhs.x;
}
} q[MAXN*4+5];
void add_rec(int x1,int x2,int y1,int y2,int id){
// printf("%d %d %d %d %d\n",x1,x2,y1,y2,id);
q[++qn]={x2,y2,1,id};q[++qn]={x1-1,y2,-1,id};
q[++qn]={x2,y1-1,-1,id};q[++qn]={x1-1,y1-1,1,id};
}
struct fenwick{
int t[MAXN+5];
void add(int x,int v){for(int i=x;i<=n;i+=(i&(-i))) t[i]+=v;}
int query(int x){int ret=0;for(int i=x;i;i&=(i-1)) ret+=t[i];return ret;}
} tr;
int main(){
scanf("%d",&n);
for(int i=2;i<=n;i++) scanf("%d",&fa[i][0]),adde(fa[i][0],i);
dfs1(1);dfs2(1,1);build(1,1,n);
for(int i=1;i<=n;i++) modify(1,dfn[i],dfn[i],dep[i]);
scanf("%d",&m);
for(int i=1,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
pts[dfn[x]].pb(dfn[y]);pts[dfn[y]].pb(dfn[x]);
// printf("(%d %d)\n",dfn[x],dfn[y]);
jumpath(x,y,dep[getlca(x,y)]);
}
for(int i=1;i<=LOG_N;i++) for(int j=1;j<=n;j++) fa[j][i]=fa[fa[j][i-1]][i-1];
for(int i=1;i<=n;i++) nt[i][0]=get_kanc(i,dep[i]-query(1,dfn[i]));
for(int i=1;i<=LOG_N;i++) for(int j=1;j<=n;j++) nt[j][i]=nt[nt[j][i-1]][i-1];
scanf("%d",&qu);
for(int i=1;i<=qu;i++){
int x,y,l;scanf("%d%d",&x,&y);l=getlca(x,y);
int sx=step(x,dep[l]),sy=step(y,dep[l]);
if(!~sx||!~sy) ans[i]=-1;
else{
ans[i]=sx+sy;
if(sx!=0&&sy!=0){
int ax=get_kstp(x,sx-1);
int ay=get_kstp(y,sy-1);
add_rec(dfn[ax],edt[ax],dfn[ay],edt[ay],i);
}
}
}
// for(int i=1;i<=qu;i++) printf("%d\n",ans[i]);
sort(q+1,q+qn+1);int cur=1;
for(int i=1;i<=qn;i++){
while(cur<=q[i].x){
for(int y:pts[cur]) tr.add(y,1);
cur++;
} cnt[q[i].id]+=q[i].t*tr.query(q[i].y);
// printf("%d %d %d\n",q[i].x,q[i].y,tr.query(q[i].y));
}
for(int i=1;i<=qu;i++) printf("%d\n",ans[i]-(cnt[i]>0));
return 0;
}

Codeforces 983E - NN country(贪心+倍增优化)的更多相关文章

  1. 【CodeForces】983 E. NN country 树上倍增+二维数点

    [题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...

  2. CF983E NN country(倍增,差分)

    题意 给定一棵树和若干条路线,每条路线相当于树上 x,y 之间的路径,途径路径上的每个点 给出若干个询问,每次询问从 u 到 v 至少需要利用几条路线 N,M,Q≤200000 题解 构建倍增数组g[ ...

  3. CodeForces - 1175E Minimal Segment Cover (倍增优化dp)

    题意:给你n条线段[l,r]以及m组询问,每组询问给出一组[l,r],问至少需要取多少个线段可以覆盖[l,r]区间中所有的点. 如果贪心地做的话,可以求出“从每个左端点l出发选一条线段可以到达的最右端 ...

  4. 【codeforces 983E】NN country

    Description In the NN country, there are n cities, numbered from 1 to n, and n−1 roads, connecting t ...

  5. Codeforces 356D 倍增优化背包

    题目链接:http://codeforces.com/contest/356/problem/D 思路(官方题解):http://codeforces.com/blog/entry/9210 此题需要 ...

  6. codeforces 704B - Ant Man 贪心

    codeforces 704B - Ant Man 贪心 题意:n个点,每个点有5个值,每次从一个点跳到另一个点,向左跳:abs(b.x-a.x)+a.ll+b.rr 向右跳:abs(b.x-a.x) ...

  7. POJ 1014 Dividing(多重背包, 倍增优化)

    Q: 倍增优化后, 还是有重复的元素, 怎么办 A: 假定重复的元素比较少, 不用考虑 Description Marsha and Bill own a collection of marbles. ...

  8. CodeForces - 50A Domino piling (贪心+递归)

    CodeForces - 50A Domino piling (贪心+递归) 题意分析 奇数*偶数=偶数,如果两个都为奇数,最小的奇数-1递归求解,知道两个数都为1,返回0. 代码 #include ...

  9. HZOJ 20190727 随(倍增优化dp)

    达哥T1 实际上还是挺难的,考试时只qj20pts,还qj失败 因为他专门给出了mod的范围,所以我们考虑把mod加入时间复杂度. $50\%$算法: 考虑最暴力的dp,设$f[i][j]$表示进行$ ...

随机推荐

  1. wget命令8种实用用法

    大家好,我是良许. wget 是一个可以从网络上下载文件的免费实用程序,它的工作原理是从 Internet 上获取数据,并将其保存到本地文件中或显示在你的终端上. 这实际上也是大家所使用的浏览器所做的 ...

  2. 欧姆龙PLC HostLink协议整理

    欧姆龙PLC HostLink协议整理 1.常用的存储器功能区 CIO: 输入继电器  272 点(17 CH) 0.00-16.15 输出继电器  272 点(17 CH) 100.00-116.1 ...

  3. 编译qwt遇到的问题

    在windows下使用mingw编译从git上下载的qwt工程下的tests时一直提示一下错误: error: undefined reference to `qMain(int, char**)' ...

  4. Linux多线程编程之详细分析

    线程?为什么有了进程还需要线程呢,他们有什么区别?使用线程有什么优势呢?还有多线程编程的一些细节问题,如线程之间怎样同步.互斥,这些东西将在本文中介绍.我见到这样一道面试题: 是否熟悉POSIX多线程 ...

  5. Redis6.2发布 地理位置功能增强了什么?

    原文地址:https://developer.aliyun.com/article/780257 Redis社区最近刚刚发布Redis6.2 RC1版本,在本次发布中,阿里云Tair团队(阿里云云内存 ...

  6. Chrome handless无界面浏览器的脚本操作

    1.什么是Phantomjs (已经停止更新) 是一个无界面的浏览器 支持页面元素查找,js的执行等 由于不进行css和gui渲染,运行效率要比真实的浏览器要快很多 2.如何使用Phantomjs? ...

  7. 菜鸡的Java笔记 第十 - java 类与对象

    (局部变量需要初始化,全局变量不初始化系统也会帮忙初始化而局部变量系统不会帮忙初始化)>>>    2.1 类与对象基本概念        在现实生活之中,类指的就是具备某一共性的群 ...

  8. 说透 Docker:虚拟化

    本章内容将讲解 Docker 虚拟化.虚拟化本质.namespace.cgroups. Docker 虚拟化 关于Docker 本小节将介绍 Docker 虚拟化的一些特点. Docker 是一个开放 ...

  9. nginx 支持websocket

    nginx 反向代理websocket nginx配置 请求地址及路径:ws://x.x.x.x/web/springws/websocket.ws 解析 map 指令 上面 nginx.conf 配 ...

  10. centos7系列的网络yum源配置

    因为新安装centos机器yum比较旧,主要是对网易源进行配置,其它源也差不多.我是在securecrt远程ssh工具操作的,非虚拟机软件上. yum install lszrz -y   安装上传工 ...