Codeforces 题目传送门 & 洛谷题目传送门

可能有人会问我为什么为这道 *2500 的 D1C 写题解,我觉得大概是想要在写题解数量上 dd ycx 吧,因为 ycx 到目前为止写了 143 篇题解,而这也是我的第 143 篇题解(((

大概和 CF1149C Tree Generator 比较像?做过那题这题基本可以一眼秒了(

线段树。每个区间维护以下八个值:

  • 区间第一个元素的值 \(fst\)
  • 区间最后一个元素的值 \(lst\)
  • 区间长度 \(len\)
  • 以左端点为开头的最长下降前缀的长度 \(llen\)
  • 以右端点为开头的最长上升后缀的长度 \(rlen\)
  • 以左端点为开头的先上升再下降的最长前缀长度 \(l\_tower\)
  • 以右端点为结尾的先上升再下降的最长前缀长度 \(r\_tower\)
  • 这段区间中最长的先上升后下降子序列的长度 \(mx\)

考虑合并左右两个区间:

  • \(fst\) 就直接继承左儿子的 \(fst\) 即可
  • \(lst\) 就直接继承右儿子的 \(lst\) 即可
  • \(len\) 就直接将左右儿子的 \(len\) 加起来即可
  • \(llen\) 分两种情况,如果左儿子的 \(llen\) 就等于其 \(len\),并且左儿子的 \(lst\) 大于右儿子的 \(fst\),那么该节点的 \(llen\) 等于左右节点的 \(llen\) 之和。否则该节点的 \(llen\) 等于左儿子的 \(llen\)。\(rlen\) 也同理
  • \(l\_tower\) 分三种情况,如果左儿子本身就是上升序列,即左儿子的 \(rlen\) 等于其 \(len\),并且左儿子的 \(lst\) 小于右儿子的 \(fst\),那么 \(l\_tower\) 就等于左儿子的 \(rlen\) 与右儿子的 \(l\_tower\) 的和。如果左儿子的 \(l\_tower\) 等于其 \(len\),并且左儿子的 \(lst\) 大于右儿子的 \(fst\),那么 \(l\_tower\) 就等于左儿子的 \(len\) 与右儿子的 \(llen\) 之和。否则 \(l\_tower\) 等于左儿子的 \(l\_tower\)。\(r\_tower\) 也同理。
  • \(mx\) 分四种情况,首先它可以从左右儿子的 \(mx\) 分别继承来,即它首先等于左右儿子 \(mx\) 的较大者。其次如果左儿子的 \(lst\) 小于右儿子的 \(fst\),那么 \(mx\) 可以用左儿子的 \(rlen\) 与右儿子的 \(l\_tower\) 之和更新;如果左儿子的 \(lst\) 大于右儿子的 \(fst\),那么 \(mx\) 可以用左儿子的 \(r\_tower\) 与右儿子的 \(llen\) 之和更新

写个结构体维护一下即可。区间修改就直接打个标记。

芜湖~做完了,记得开 long long,复杂度线对。

const int MAXN=3e5;
int n,qu,a[MAXN+5];
struct data{
ll fst,lst;int len,llen,rlen,l_tower,r_tower,mx;
data(){fst=lst=len=llen=rlen=l_tower=r_tower=mx=0;}
data(int _fst,int _lst,int _len,int _llen,int _rlen,int _l_tower,int _r_tower,int _mx):
fst(_fst),lst(_lst),len(_len),llen(_llen),rlen(_rlen),l_tower(_l_tower),r_tower(_r_tower),mx(_mx){}
friend data operator +(data a,data b){
data c;
c.fst=a.fst;c.lst=b.lst;c.len=a.len+b.len;
c.llen=(a.llen==a.len&&a.lst>b.fst)?(a.llen+b.llen):a.llen;
c.rlen=(b.rlen==b.len&&a.lst<b.fst)?(b.rlen+a.rlen):b.rlen;
c.l_tower=(a.rlen==a.len&&a.lst<b.fst)?(a.l_tower+b.l_tower):
((a.l_tower==a.len&&a.lst>b.fst)?(a.l_tower+b.llen):(a.l_tower));
c.r_tower=(b.llen==b.len&&a.lst>b.fst)?(b.r_tower+a.r_tower):
((b.r_tower==b.len&&a.lst<b.fst)?(b.r_tower+a.rlen):(b.r_tower));
c.mx=max(a.mx,b.mx);
if(a.lst>b.fst) c.mx=max(c.mx,a.r_tower+b.llen);
if(a.lst<b.fst) c.mx=max(c.mx,a.rlen+b.l_tower);
return c;
}
};
struct node{int l,r;ll lz;data v;} s[MAXN*4+5];
void pushup(int k){s[k].v=s[k<<1].v+s[k<<1|1].v;}
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;if(l==r){s[k].v=data(a[l],a[l],1,1,1,1,1,1);return;}
int mid=l+r>>1;build(k<<1,l,mid);build(k<<1|1,mid+1,r);pushup(k);
}
void pushdown(int k){
if(s[k].lz){
s[k<<1].lz+=s[k].lz;s[k<<1].v.fst+=s[k].lz;s[k<<1].v.lst+=s[k].lz;
s[k<<1|1].lz+=s[k].lz;s[k<<1|1].v.fst+=s[k].lz;s[k<<1|1].v.lst+=s[k].lz;
s[k].lz=0;
}
}
void modify(int k,int l,int r,int x){
if(l<=s[k].l&&s[k].r<=r){
s[k].lz+=x;s[k].v.fst+=x;s[k].v.lst+=x;
return;
} pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) modify(k<<1,l,r,x);
else if(l>mid) modify(k<<1|1,l,r,x);
else modify(k<<1,l,mid,x),modify(k<<1|1,mid+1,r,x);
pushup(k);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,1,n);scanf("%d",&qu);
while(qu--){
int l,r,v;scanf("%d%d%d",&l,&r,&v);
modify(1,l,r,v);printf("%d\n",s[1].v.mx);
}
return 0;
}

Codeforces 739C - Alyona and towers(线段树)的更多相关文章

  1. Codeforces 739C Alyona and towers 线段树

    Alyona and towers 这个题写起来真的要人命... 我们发现一个区间被加上一个d的时候, 内部的结构是不变的, 改变的只是左端点右端点的值, 这样就能区间合并了. 如果用差分的话会简单一 ...

  2. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  3. codeforces 22E XOR on Segment 线段树

    题目链接: http://codeforces.com/problemset/problem/242/E E. XOR on Segment time limit per test 4 seconds ...

  4. Codeforces 588E. A Simple Task (线段树+计数排序思想)

    题目链接:http://codeforces.com/contest/558/problem/E 题意:有一串字符串,有两个操作:1操作是将l到r的字符串升序排序,0操作是降序排序. 题解:建立26棵 ...

  5. Codeforces Gym 100803G Flipping Parentheses 线段树+二分

    Flipping Parentheses 题目连接: http://codeforces.com/gym/100803/attachments Description A string consist ...

  6. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

  7. Codeforces 444C DZY Loves Colors(线段树)

    题目大意:Codeforces 444C DZY Loves Colors 题目大意:两种操作,1是改动区间上l到r上面德值为x,2是询问l到r区间总的改动值. 解题思路:线段树模板题. #inclu ...

  8. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  9. [Codeforces]817F. MEX Queries 离散化+线段树维护

    [Codeforces]817F. MEX Queries You are given a set of integer numbers, initially it is empty. You sho ...

随机推荐

  1. 锚点布局anchorlayout在kv中的引用

    from kivy.app import App from kivy.uix.anchorlayout import AnchorLayout from kivy.uix.button import ...

  2. [no_code][Beta]设计和计划

    2020春季计算机学院软件工程(罗杰 任健) 2020春季计算机学院软件工程(罗杰 任健) 作业要求 Beta设计和计划 我们在这个课程的目标是 远程协同工作,采用最新技术开发软件 这个作业在哪个具体 ...

  3. 2021.10.27考试总结[冲刺NOIP模拟17]

    T1 宝藏 发现每个数成为中位数的长度是关于权值单调的.线段树二分判断是否合法,单调指针扫即可. 考场上写了二分,平添\(\log\). \(code:\) T1 #include<bits/s ...

  4. 2021.8.18 NKOJ周赛总结

    两个字总结:安详 T1: NKOJ-6179 NP问题 问题描述: p6pou在平面上画了n个点,并提出了一个问题,称为N-Points问题,简称NP问题. p6pou首先在建立的平面直角坐标系,并标 ...

  5. IOC和DI之刨根问底之第一节

    很多freshman上来就想搞清楚什么是IOC和DI,其实很多先进的理论和技术都在老的基础上升华出来的,最终目的是为了解放生产力. 所以先来说说下面两点基础知识: Direct Dependency( ...

  6. 攻防世界 杂项13.can_has_stdio?

    打开发现是由trainfuck编码组成的小星星阵容,果断交给解密网站进行解密, 解密网站:http://ctf.ssleye.com/brain.html flag:flag{esolangs_for ...

  7. ssh key公钥

    在ubuntu上生成ssh key 首先使用 ls -al ~/.ssh 查看本地是否已经有key 如果没有会显示如下: ~$ ls -al ~/.ssh ls: cannot access '/ho ...

  8. Codeforces Round #736 (Div. 2)

    A,B,C就不说了,又被D题卡住了..... 感觉怎么说呢,就是题解中的三个提示都已经想到了,就是不知道该怎么解决.... D. Integers Have Friends 简述题意:题目要求你找一个 ...

  9. Spring Cloud Alibaba环境搭建

    前言:Spring Cloud Alibaba是目前主流的分布式微服务架构,本文主要讲解了在IDEA中如何搭建Spring Cloud Alibaba环境,以及介绍Spring Cloud Aliba ...

  10. [WPF] 玩玩彩虹文字及动画

    1. 前言 兴致来了玩玩 WPF 的彩虹文字.不是用 LinearGradientBrush 制作渐变色那种,是指每个文字独立颜色那种彩虹文字.虽然没什么实用价值,但希望这篇文章里用 ItemsCon ...