稳定婚姻问题就是给你n个男的,n个女的,然后给你每个男生中女生的排名,和女生心目中男生的排名,然后让你匹配成n对,使婚姻稳定,假如a和b匹配,c和d匹配,如果a认为d比b好,同时d也认为a比c好,那么ad就有可能私奔,这样就导致了婚姻的不稳定,稳定婚姻就是找到一种解决方案让婚姻稳定

算法:

      稳定婚姻的解决方法比较简单,通俗易懂,而且还容易实现,具体有没有固定的模板我不知道,没有去找,自己模拟的,在求解的过程中,我们先把所有的男生都加到队列里,队列里的就表示当前还单身的男生,每次从队列里拿出一个男生,然后从她最喜欢的女生开始匹配,如果当前的女生尝试追求过,那么就不用追求了,如果当前的女生没有伴侣,那么可以直接匹配上,如果有伴侣,那么就看看当前这个男生和女生之前的伴侣在那个女生中更喜欢谁,如果更喜欢当先的这个男生,那么当前男生就和这个女生匹配,女生之前匹配过的直接变成单身,被扔回队列,否则,继续找下一个女生,知道找到一个能匹配上的为止,就这样一直到队列空的时候,就已经全部匹配完成了。


正确性:

        对于男生来说,每次都是从最喜欢的女生开始匹配的,遇到的第一个没人能抢走的并且稳定的就是自己最终伴侣,也就是说如果之前追求过的女生被别人抢走了,那么他将永远抢不会来,因为对于女生来说,第一次被男士按照自己的意愿选择之后,每次变更匹配对象都是在自己心目中更加喜欢的,所以一旦他放弃了某个男生,那么那个男生就没希望在和他匹配,这样男生是从最优的选的,保证男生不会出轨,女生每次都是在选择她的男生中选择最优的,这样也保证了女生最后没有怨言,这样的话,最后的到的婚姻就是稳定的,至于稳定婚姻,肯定会有稳定方案,这个我暂时证明不了.<1962年,美国数学家
David Gale 和 Lloyd Shapley是这两个人发明的方法,并且证明了稳定婚姻一定会有解>。

#include<stdio.h>

#include<string.h>

#include<queue>

#include<algorithm>

#define N 30

using namespace std;

typedef struct

{

   char a ,b;

}NODE;

NODE Ans[N];

int map[N][N] ,G_b[N][N];

int nowb[N] ,nowg[N];

char nameb[N] ,nameg[N];

int mark[N][N] ,ID[200];

bool camp(NODE a ,NODE b)

{

   return a.a < b.a;

}

void Marr(int n)

{

   queue<int>q;

   for(int i = 1 ;i <= n ;i ++)

   q.push(i);

  

   memset(mark ,0 ,sizeof(mark));

   memset(nowb ,255 ,sizeof(nowb));

   memset(nowg ,255 ,sizeof(nowg));

  

   while(!q.empty())

   {

      int xin ,tou = q.front();

      q.pop();

     

      for(int i = 1 ;i <= n ;i ++)

      {

         xin = map[tou][i];

         if(mark[tou][xin]) continue;

         mark[tou][xin] = 1;

         if(nowg[xin] == -1)

         {

            nowg[xin] = tou;

            nowb[tou] = xin;

            break;

         }

         else

         {

            if(G_b[xin][tou] > G_b[xin][nowg[xin]])

            {

               q.push(nowg[xin]);

               nowg[xin] = tou;

               nowb[tou] = xin;

               break;

            }

         }

      }

   }

   return ;

}

int main ()

{

   int t ,n ,i ,j;

   char str[30];

   scanf("%d" ,&t);

   while(t--)

   {

      scanf("%d" ,&n);

      getchar();

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         ID[str[0]] = i;

         nameb[i] = str[0];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         ID[str[0]] = i;

         nameg[i] = str[0];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         for(j = 2 ;j <= n + 1 ;j ++)

         map[ID[str[0]]][j-1] = ID[str[j]];

      }

      for(i = 1 ;i <= n ;i ++)

      {

         scanf("%s" ,str);

         for(j = 2 ;j <= n + 1 ;j ++)

         G_b[ID[str[0]]][ID[str[j]]] = n - j + 2;

      }

      Marr(n);

      for(i = 1 ;i <= n ;i ++)

      Ans[i].a = nameb[i] ,Ans[i].b = nameg[nowb[i]];

      sort(Ans + 1 ,Ans + n + 1 ,camp);

      for(i = 1 ;i <= n ;i ++)

      printf("%c %c\n" ,Ans[i].a ,Ans[i].b);

      if(t) printf("\n");

   }

   return 0;

}

hdu1914 稳定婚姻问题的更多相关文章

  1. HDU1914 稳定婚姻匹配

    The Stable Marriage Problem Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (J ...

  2. 【HDU1914 The Stable Marriage Problem】稳定婚姻问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1914 题目大意:问题大概是这样:有一个社团里有n个女生和n个男生,每位女生按照她的偏爱程度将男生排序, ...

  3. UVA 1175 Ladies' Choice 稳定婚姻问题

    题目链接: 题目 Ladies' Choice Time Limit: 6000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 问题 ...

  4. BZOJ2140: 稳定婚姻

    题解: 题意就是求二分图的必须边. 我们有结论: 在残量网络上跑tarjan,对于一条边(u,v) 如果该边满流||scc[u]==scc[v],那么该边是可行边. 因为如果scc[u]==scc[v ...

  5. 【POJ 3487】 The Stable Marriage Problem (稳定婚姻问题)

    The Stable Marriage Problem   Description The stable marriage problem consists of matching members o ...

  6. 【UVAlive 3989】 Ladies' Choice (稳定婚姻问题)

    Ladies' Choice Teenagers from the local high school have asked you to help them with the organizatio ...

  7. 【稳定婚姻问题】【HDU1435】【Stable Match】

    2015/7/1 19:48 题意:给一个带权二分图  求稳定匹配 稳定的意义是对于某2个匹配,比如,( a ---- 1) ,(b----2) , 如果 (a,2)<(a,1) 且(2,a)& ...

  8. poj 3487 稳定婚姻

    /** 稳定婚姻:男生不停的求婚,女生不停地拒绝 **/ #include <iostream> #include <queue> #include <cstdio> ...

  9. 稳定婚姻问题和Gale-Shapley算法(转)

    什么是算法?每当有人问作者这样的问题时,他总会引用这个例子:假如你是一个媒人,有若干个单身男子登门求助,还有同样多的单身女子也前来征婚.如果你已经知道这些女孩儿在每个男孩儿心目中的排名,以及男孩儿们在 ...

随机推荐

  1. Spring Boot 2.x基础教程:使用MongoDB

    前段时间因为团队调整,大部分时间放在了团队上,这系列的更新又耽误了一下.但既然承诺持久更新,那就不会落下,今天开始继续更新这部分的内容! 过了年,重申一下这个系列的目标:目前主要任务就是把Spring ...

  2. java安全初学之动态代理

    前言:作为安全人员,代理大家用的都很多,那什么是java中的动态代理呢?事实上,java中的"动态"也就意味着使用了反射,因此动态代理是基于反射机制的一种代理模式. 简介: 代理是 ...

  3. C# 应用 - 封装类访问 Mysql 数据库

    个人经历的项目主要都是用 Postgresql 或 Oracle 数据库,本文非原创,从他处整理而来. 1. 库类 mysql.data.dll using MySql.Data.MySqlClien ...

  4. Vulkan移植GpuImage(一)高斯模糊与自适应阈值

    自适应阈值效果图 demo 这几天抽空看了下GpuImage的filter,移植了高斯模糊与自适应阈值的vulkan compute shader实现,一个是基本的图像处理,一个是组合基础图像处理聚合 ...

  5. Go语言学习笔记——Go语言的指针

    Go具有指针.指针保存了变量的内存地址. 类型*T是指向类型T的值得指针.其零值是nil var p *int &符号会生成一个指向其作用对象的指针 i:=42 P=&i *符号表示指 ...

  6. golang 三维向量相关操作

    package vector import ( "math" "fmt" )// 三维向量:(x,y,z) type Vector3 struct { X fl ...

  7. 文本编辑工具 Vim与压缩打包

    vim一共有3种模式:一般模式.编辑模式和命令模式 一般模式下的移动光标 光标向左移动:h或者向左的方向键 光标向右移动:l或者向右的方向键光标向上移动:k或者向上的方向键光标向下移动:j或者向下的方 ...

  8. menuStrip鼠标滑过自动弹出

    public partial class FrmMain : Form { public FrmMain() { InitializeComponent(); } private void 退出系统T ...

  9. C++并发与多线程学习笔记--基本概念和实现

    基本概念 并发 可执行程序.进程.线程 学习心得 并发的实现方法 多进程并发 多线程并发 总结 C++标准库 基本概念 (并发.进程.线程)区分C++初级编程和中高级编程 并发 两个或者更多的任务同时 ...

  10. 通过lms.samples熟悉lms微服务框架的使用

    经过一段时间的开发与测试,终于发布了Lms框架的第一个正式版本(1.0.0版本),并给出了lms框架的样例项目lms.samples.本文通过对lms.samples的介绍,简述如何通过lms框架快速 ...