首先我们理解一下,什么叫做正则化?

  目的角度:防止过拟合

  简单来说,正则化是一种为了减小测试误差的行为(有时候会增加训练误差)。我们在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现。当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象(训练集表现很好,测试集表现较差),这会导致模型的泛化能力下降,这时候,我们就需要使用正则化,降低模型的复杂度。

一、神经网路得L1、L2正则化

1、矩阵的F-1范数、F-2范数

说明:这里的F-范数指的是Frobenius范数,和logistics回归的L1、L2正则化的向量范数不一样。

矩阵的F-1范数:矩阵所有元素的绝对值之和。公式为:

矩阵的F-2范数:矩阵所有元素的平方求和后开根号。公式为:

2、L1正则化与L2正则化(主要使用L2)

 假设神经网络的损失函数为J(W,b),参考逻辑回归的正则化,是在损失函数J(W,b)后面加一个正则化项,神经网络DNN也是一样的,只是变成了加F-范数,L1正则化与L2正则化如下所示:

这里m为样本数,l为各个隐藏层,λλ为超参数,需要自己调试,L2中2m是为了后面求梯度的时候可以抵消掉常数2。

3、L1正则化与L2正则化的区别

  L1 正则化项的效果是让权值 W 往 0 靠,使网络中的权值尽可能为 0,也就相当于减小了网络复杂度,防止过拟合。事实上,L1 正则化能产生稀疏性,导致 W 中许多项变成零。

  L2 正则化项的效果是减小权值 W。事实上,更小的权值 W,从某种意义上说,表示网络的复杂度更低,对数据的拟合刚刚好。

二、Dropout正则化(随机失活)

  Dropout提供了正则化一大类模型的方法,计算方便且功能强大。它不同于L1、L2正则项那样改变损失函数。而是改变模型本身。Dropout可以被认为是集成大量深层神经网络的使用Bagging的方法。Dropout提供一种廉价的Bagging集成近似,能够训练和评估指数级数量的神经网络。

  假设训练的网络:

  对于使用dropout技术的话,我们随机删除隐层的神经元,形成新的网络:

  然后,我们通过前向求损失,反向传到损失,批量梯度下降完成一批,更新完w和b,然后继续随机删除隐藏层的神经元,继续批量梯度下降更新权值和偏置。

反向随机失活(inverted dropout):

  反向随机失活(inverted dropout),是在训练时就进行数值范围调整,从而让前向传播在测试时保持不变。这样做还有一个好处,无论你决定是否使用随机失活,预测方法的代码可以保持不变。

  反向随机失活的代码如下:

"""
反向随机失活推荐实现方式
在训练时drop和调整数值范围,测试时不做任何事
""" p = 0.5 #激活神经元得概率,P值更高=随机失活更弱 def train_step(x):
#三层neural network的向前传播
H1 = np.maximum(0,np.dot(w1,X) + b1)
U1 = (np.random.rand(*H1.shape) < p) / p #第一个随机失活遮罩。注意P!!!
H1 *=U1 #drop!
H2 = np.maximum(0,np.dot(w2,H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p #第一个随机失活遮罩。注意P!!!
H2 *=U2 #drop!
out = np.dot(w3,H2)+b3 #反向传播:计算梯度。。。(略)
#进行参数更新。。。(略) def predict(X):
# 向前传播时模型集成
H1 = np.maximum(0,np.dot(w1,X) + b1) #不用进行数值范围调整
H2 = np.maximum(0,np.dot(w2,H1) + b2)
out = np.dot(w3,H2) + b3

9、改善深度神经网络之正则化、Dropout正则化的更多相关文章

  1. Deeplearning.ai课程笔记-改善深层神经网络

    目录 一. 改善过拟合问题 Bias/Variance 正则化Regularization 1. L2 regularization 2. Dropout正则化 其他方法 1. 数据变形 2. Ear ...

  2. [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...

  3. 深度神经网络(DNN)的正则化

    和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考虑泛化,这里我们就对DNN的正则化方法做一个总结. 1. DNN的L1&L2正则化 想到正则化,我们首先想到的就是L1正则化和L2正 ...

  4. Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化

    目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...

  5. 吴恩达深度学习笔记(十一)—— dropout正则化

    主要内容: 一.dropout正则化的思想 二.dropout算法流程 三.dropout的优缺点 一.dropout正则化的思想 在神经网络中,dropout是一种“玄学”的正则化方法,以减少过拟合 ...

  6. Coursera Deep Learning笔记 改善深层神经网络:超参数调试 正则化以及梯度相关

    笔记:Andrew Ng's Deeping Learning视频 参考:https://xienaoban.github.io/posts/41302.html 参考:https://blog.cs ...

  7. 1.6 dropout正则化

    除了L2正则化,还有一个非常实用的正则化方法----dropout(随机失活),下面介绍其工作原理. 假设你在训练下图左边的这样的神经网络,它存在过拟合情况,这就是dropout所要处理的.我们复制这 ...

  8. 【DeepLearning】深入理解dropout正则化

    本文为转载,作者:Microstrong0305 来源:CSDN 原文:https://blog.csdn.net/program_developer/article/details/80737724 ...

  9. 优化深度神经网络(一) dropout 初始化

    Coursera吴恩达<优化深度神经网络>课程笔记(1)-- 深度学习的实用层面 1. Train/Dev/Test sets  训练集(Training sets).验证集(Develo ...

随机推荐

  1. final添加内存屏障问题

    看了 why大佬的 博客一个困扰我122天的技术问题,我好像知道答案了. 发现他留了个坑,在变量i类型为 int 或者 Integer 时,int类型的i死循环了而Integer类型的i可以结束 in ...

  2. XCTF_Android 黑客精神

    一.概述 这题感觉要懂一些开发的东西才能弄,正向和逆向是永远离不开的 二.先用jeb打开,找到AndroidMainfest这个文件,找到启动的主活动是啥 虽然一般也是就是MainActiivity, ...

  3. 关于中文版的manpages

    可以从下面下载对应的包: https://code.google.com/p/manpages-zh/ https://github.com/lidaobing/manpages-zh 目前只有一部分 ...

  4. Podistributor播客分发系统介绍

    特性 向用户暴露节目的别名 URL ,在用户访问时重定向至真实的目标资源 URL ,以高效地进行 CDN 切换和便捷地建立失效转移机制. 异步转发请求至统计服务,以解耦用户请求和数据统计,可方便地接入 ...

  5. JVM优化过头了,直接把异常信息优化没了?

    你好呀,我是why. 你猜这次我又要写个啥没有卵用的知识点呢? 不好意思,问的稍微有点早了,啥提示都没给,咋猜呢,对吧? 先给你上个代码: public class ExceptionTest {   ...

  6. Installation failed with message INSTALL_FAILED_TEST_ONLY问题

    Android Studio连接手机进行app调试,遇到如下问题: Installation failed with message INSTALL_FAILED_TEST_ONLY. It is p ...

  7. Java基础00-Lamda表达式30

    1. Lambda表达式 Java8新特征之Lambda表达式 1.1 函数式编程思想概述 1.2 体验Lambda表达式 代码示例: 方式一就不演示了,可以去看Java基础24 方式2:匿名内部类的 ...

  8. [刘阳Java]_EasyUI环境搭建_第2讲

    在EasyUI的第1讲中我们介绍了学习EasyUI能够做什么,这次我们得快速搭建一个EasyUI环境,来测试一下它的运行效果 1.jQuery EasyUI环境搭建 <script type=& ...

  9. flutter实战demo,仿luckin coffee。

    flutter_luckin_coffee flutter luckin coffee application(仿瑞幸咖啡) 目录 前言 安卓扫码体验 flutter版本信息 安装 相关插件 维护者 ...

  10. Echarts入门踩坑记录

    关于Echarts,官网上,是这样介绍的,"Echarts,一个使用JavaScript实现的开源可视化库",也就是说,在使用过程中,将其作为普通的JavaScript组件库使用即 ...