剑指 Offer 68 - I. 二叉搜索树的最近公共祖先
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉搜索树中。
一、迭代
算法流程:
1.循环搜索:当节点 root 为空时跳出;
- 当 p, q都在 root的 右子树 中,则遍历至 root.right;
- 否则,当 p, q 都在 root 的 左子树 中,则遍历至 root.left;
- 否则,说明找到了 最近公共祖先 ,跳出。
2.返回值: 最近公共祖先 rootroot 。
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
while(root != null) {
if(root.val < p.val && root.val < q.val) // p,q 都在 root 的右子树中
root = root.right; // 遍历至右子节点
else if(root.val > p.val && root.val > q.val) // p,q 都在 root 的左子树中
root = root.left; // 遍历至左子节点
else break;
}
return root;
}
}
第二个代码是为了保证p.val<q.val。
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(p.val > q.val) { // 保证 p.val < q.val
TreeNode tmp = p;
p = q;
q = tmp;
}
while(root != null) {
if(root.val < p.val) // p,q 都在 root 的右子树中
root = root.right; // 遍历至右子节点
else if(root.val > q.val) // p,q 都在 root 的左子树中
root = root.left; // 遍历至左子节点
else break;
}
return root;
}
}
二、递归
p.val >root.val && q.val > root.val说明p,q在root的右子树中,并开启递归返回root.right
p.val<root.val&&q.val <root.val说明p,q在root的左子树中,并开启递归返回root.left
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root.val < p.val && root.val < q.val)
return lowestCommonAncestor(root.right, p, q);
if(root.val > p.val && root.val > q.val)
return lowestCommonAncestor(root.left, p, q);
return root;
}
}
参考链接:
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先的更多相关文章
- 剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 + 二叉排序树 + 最近公共祖先
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 Offer_68_1 题目描述 方法一:迭代法 由于该题的二叉树属于排序二叉树,所以相对较简单. 只需要判断两个结点是否在根节点的左右子树中 ...
- 刷题-力扣-剑指 Offer II 055. 二叉搜索树迭代器
剑指 Offer II 055. 二叉搜索树迭代器 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/kTOapQ 著作权归领扣网络所有 ...
- 《剑指offer》面试题68 - I. 二叉搜索树的最近公共祖先
问题描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x 是 p ...
- 剑指OFFER之从二叉搜索树的后序遍历序列(九度OJ1367)
题目描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 输入: 每个测试案例包括2行: 第一行为1个整数 ...
- 剑指offer 27:二叉搜索树与双向链表
题目描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 解题思路 采用中序遍历遍历二叉树,利用二叉排序树的特性,顺次连接节点,形成 ...
- 剑指offer 24:二叉搜索树的后序遍历序列
题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 解题思路 后序遍历,顾名思义根节点位于尾部,故可将 ...
- 剑指offer 面试题. 二叉搜索树的第k个结点
题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. 解: 由于二叉搜索树的中序遍历是升序,所以在中 ...
- 剑指offer系列——62.二叉搜索树的第k个结点
Q:给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. T: 中序遍历,递归: int count = 0; public ...
- 【Java】 剑指offer(68) 树中两个结点的最低公共祖先
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 输入两个树结点,求它们的最低公共祖先. 思路 该题首先要和面试 ...
随机推荐
- EF Core3.1 CodeFirst动态自动添加表和字段的描述信息
前言 我又来啦.. 本篇主要记录如何针对CodeFirst做自动添加描述的扩展 为什么要用这个呢.. 因为EF Core3.1 CodeFirst 对于自动添加描述这块 只有少部分的数据库支持.. 然 ...
- cron表达式详解(转)
Cron表达式是一个字符串,字符串以5或6个空格隔开,分为6或7个域,每一个域代表一个含义,Cron有如下两种语法格式: (1) Seconds Minutes Hours DayofMonth Mo ...
- Selenium启动Firefox示例(python版)
目前做selenium自动化使用的主流语言分为java和python,前一篇为java版,本篇介绍python实现selenium启动Firefox. 1 #-*- coding:utf-8 -*- ...
- webpack 快速入门 系列 —— 性能
其他章节请看: webpack 快速入门 系列 性能 本篇主要介绍 webpack 中的一些常用性能,包括热模块替换.source map.oneOf.缓存.tree shaking.代码分割.懒加载 ...
- C语言:延时1秒
使用sleep()函数将程序阻塞,头文件在windows系统和linux系统下是不一样的windowsSleep()//第一个字母大写#include <windows.h>函数原型voi ...
- PYTHON 连接SQL2008 导出到EXCEL
#import pymssql from datetime import datetime import pyodbc import os current_dir = os.path.abspath( ...
- ADB 关闭指定应用 并打开
import subprocess,time sjh="192.168.1.102:5555" aa1="adb -s {0} shell pm clear com.ku ...
- C# 连接MySQL数据库 ,查询条件中有中文时,查询不出结果
使用C#成功连接上MySql数据库后,但如果查询条件中有中文,查询结果就为空. String connetStr = "server=127.0.0.1;port=3306;user=roo ...
- SDN与OpenFlow架构--初识
一,为什么需要SDN 1,传统网络的缺点: a,传统网络及其设备的只可配置,不可编程,只能按照已定义好的协议处理或转发数据,不能适应需求新变化,不能自主开发新功能. 如购买一个电饭煲,可以煮饭,煲汤. ...
- RHEL7通过Rsyslog搭建集中日志服务器
说明:这里是Linux服务综合搭建文章的一部分,本文可以作为单独搭建rsyslog日志服务器的参考. 注意:这里所有的标题都是根据主要的文章(Linux基础服务搭建综合)的顺序来做的. 如果需要查看相 ...