NumPy之:ndarray多维数组操作
NumPy之:ndarray多维数组操作
简介
NumPy一个非常重要的作用就是可以进行多维数组的操作,多维数组对象也叫做ndarray。我们可以在ndarray的基础上进行一系列复杂的数学运算。
本文将会介绍一些基本常见的ndarray操作,大家可以在数据分析中使用。
创建ndarray
创建ndarray有很多种方法,我们可以使用np.random来随机生成数据:
import numpy as np
# Generate some random data
data = np.random.randn(2, 3)
data
array([[ 0.0929, 0.2817, 0.769 ],
[ 1.2464, 1.0072, -1.2962]])
除了随机创建之外,还可以从list中创建:
data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
array([6. , 7.5, 8. , 0. , 1. ])
从list中创建多维数组:
data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2)
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
使用np.zeros创建初始值为0的数组:
np.zeros(10)
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
创建2维数组:
np.zeros((3, 6))
array([[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]])
使用empty创建3维数组:
np.empty((2, 3, 2))
array([[[0., 0.],
[0., 0.],
[0., 0.]],
[[0., 0.],
[0., 0.],
[0., 0.]]])
注意,这里我们看到empty创建的数组值为0,其实并不是一定的,empty会从内存中随机挑选空间来返回,并不能保证这些空间中没有值。所以我们在使用empty创建数组之后,在使用之前,还要记得初始化他们。
使用arange创建范围类的数组:
np.arange(15)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
指定数组中元素的dtype:
arr1 = np.array([1, 2, 3], dtype=np.float64)
arr2 = np.array([1, 2, 3], dtype=np.int32)
ndarray的属性
可以通过data.shape获得数组的形状。
data.shape
(2, 3)
通过ndim获取维数信息:
arr2.ndim
2
可以通过data.dtype获得具体的数据类型。
data.dtype
dtype('float64')
ndarray中元素的类型转换
在创建好一个类型的ndarray之后,还可以对其进行转换:
arr = np.array([1, 2, 3, 4, 5])
arr.dtype
dtype('int64')
float_arr = arr.astype(np.float64)
float_arr.dtype
dtype('float64')
上面我们使用astype将int64类型的ndarray转换成了float64类型的。
如果转换类型的范围不匹配,则会自动进行截断操作:
arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
arr.astype(np.int32)
array([ 3, -1, -2, 0, 12, 10], dtype=int32)
注意,这里是把小数截断,并没有向上或者向下取整。
ndarray的数学运算
数组可以和常量进行运算,也可以和数组进行运算:
arr = np.array([[1., 2., 3.], [4., 5., 6.]])
arr * arr
array([[ 1., 4., 9.],
[16., 25., 36.]])
arr + 10
array([[11., 12., 13.],
[14., 15., 16.]])
arr - arr
array([[0., 0., 0.],
[0., 0., 0.]])
1 / arr
array([[1. , 0.5 , 0.3333],
[0.25 , 0.2 , 0.1667]])
arr ** 0.5
array([[1. , 1.4142, 1.7321],
[2. , 2.2361, 2.4495]])
数组之间还可以进行比较,比较的是数组中每个元素的大小:
arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])
arr2 > arr
array([[False, True, False],
[ True, False, True]])
index和切片
基本使用
先看下index和切片的基本使用,index基本上和普通数组的使用方式是一样的,用来访问数组中某一个元素。
切片要注意的是切片后返回的数组中的元素是原数组中元素的引用,修改切片的数组会影响到原数组。
# 构建一维数组
arr = np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# index访问
arr[5]
5
# 切片访问
arr[5:8]
array([5, 6, 7])
# 切片修改
arr[5:8] = 12
array([ 0, 1, 2, 3, 4, 12, 12, 12, 8, 9])
# 切片可以修改原数组的值
arr_slice = arr[5:8]
arr_slice[1] = 12345
arr
array([ 0, 1, 2, 3, 4, 12, 12345, 12, 8,
9])
# 构建二维数组
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
arr2d[2]
array([7, 8, 9])
# index 二维数组
arr2d[0][2]
3
# index二维数组
arr2d[0, 2]
3
# 构建三维数组
arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
arr3d
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
# index三维数组
arr3d[0]
array([[1, 2, 3],
[4, 5, 6]])
# copy是硬拷贝,和原数组的值相互不影响
old_values = arr3d[0].copy()
arr3d[0] = 42
arr3d
array([[[42, 42, 42],
[42, 42, 42]],
[[ 7, 8, 9],
[10, 11, 12]]])
arr3d[0] = old_values
arr3d
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
# index 三维数组
arr3d[1, 0]
array([7, 8, 9])
x = arr3d[1]
x
array([[ 7, 8, 9],
[10, 11, 12]])
x[0]
array([7, 8, 9])
index with slice
slice还可以作为index使用,作为index使用表示的就是一个index范围值。
作为index表示的slice可以有多种形式。
有头有尾的,表示index从1开始到6-1结束:
arr[1:6]
array([ 1, 2, 3, 4, 64])
无头有尾的,表示index从0开始,到尾-1结束:
arr2d[:2]
array([[1, 2, 3],
[4, 5, 6]])
有头无尾的,表示从头开始,到所有的数据结束:
arr2d[:2, 1:]
array([[2, 3],
[5, 6]])
arr2d[1, :2]
array([4, 5])
boolean index
index还可以使用boolean值,表示是否选择这一个index的数据。
我们先看下怎么构建一个boolean类型的数组:
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
names == 'Bob'
array([ True, False, False, True, False, False, False])
上面我们通过比较的方式返回了一个只包含True和False的数组。
这个数组可以作为index值来访问数组:
# 构建一个7 * 4 的数组
data = np.random.randn(7, 4)
array([[ 0.275 , 0.2289, 1.3529, 0.8864],
[-2.0016, -0.3718, 1.669 , -0.4386],
[-0.5397, 0.477 , 3.2489, -1.0212],
[-0.5771, 0.1241, 0.3026, 0.5238],
[ 0.0009, 1.3438, -0.7135, -0.8312],
[-2.3702, -1.8608, -0.8608, 0.5601],
[-1.2659, 0.1198, -1.0635, 0.3329]])
# 通过boolean数组来访问:
data[names == 'Bob']
array([[ 0.275 , 0.2289, 1.3529, 0.8864],
[-0.5771, 0.1241, 0.3026, 0.5238]])
在索引行的时候,还可以索引列:
data[names == 'Bob', 3]
array([0.8864, 0.5238])
可以用 ~
符号来取反:
data[~(names == 'Bob')]
array([[-2.0016, -0.3718, 1.669 , -0.4386],
[-0.5397, 0.477 , 3.2489, -1.0212],
[ 0.0009, 1.3438, -0.7135, -0.8312],
[-2.3702, -1.8608, -0.8608, 0.5601],
[-1.2659, 0.1198, -1.0635, 0.3329]])
我们可以通过布尔型数组设置值,在实际的项目中非常有用:
data[data < 0] = 0
array([[0.275 , 0.2289, 1.3529, 0.8864],
[0. , 0. , 1.669 , 0. ],
[0. , 0.477 , 3.2489, 0. ],
[0. , 0.1241, 0.3026, 0.5238],
[0.0009, 1.3438, 0. , 0. ],
[0. , 0. , 0. , 0.5601],
[0. , 0.1198, 0. , 0.3329]])
data[names != 'Joe'] = 7
array([[7. , 7. , 7. , 7. ],
[0. , 0. , 1.669 , 0. ],
[7. , 7. , 7. , 7. ],
[7. , 7. , 7. , 7. ],
[7. , 7. , 7. , 7. ],
[0. , 0. , 0. , 0.5601],
[0. , 0.1198, 0. , 0.3329]])
Fancy indexing
Fancy indexing也叫做花式索引,它是指使用一个整数数组来进行索引。
举个例子,我们先创建一个 8 * 4的数组:
arr = np.empty((8, 4))
for i in range(8):
arr[i] = i
arr
array([[0., 0., 0., 0.],
[1., 1., 1., 1.],
[2., 2., 2., 2.],
[3., 3., 3., 3.],
[4., 4., 4., 4.],
[5., 5., 5., 5.],
[6., 6., 6., 6.],
[7., 7., 7., 7.]])
然后使用一个整数数组来索引,那么将会以指定的顺序来选择行:
arr[[4, 3, 0, 6]]
array([[4., 4., 4., 4.],
[3., 3., 3., 3.],
[0., 0., 0., 0.],
[6., 6., 6., 6.]])
还可以使用负值来索引:
arr[[-3, -5, -7]]
array([[5., 5., 5., 5.],
[3., 3., 3., 3.],
[1., 1., 1., 1.]])
花式索引还可以组合来使用:
arr = np.arange(32).reshape((8, 4))
arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])
上面我们构建了一个8 * 4的数组。
arr[[1, 5, 7, 2], [0, 3, 1, 2]]
array([ 4, 23, 29, 10])
然后取他们的第2列的第一个值,第6列的第三个值等等。最后得到一个1维的数组。
数组变换
我们可以在不同维度的数组之间进行变换,还可以转换数组的轴。
reshape方法可以将数组转换成为任意的形状:
arr = np.arange(15).reshape((3, 5))
arr
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
数组还提供了一个T命令,可以将数组的轴进行对调:
arr.T
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
对于高维数组,可以使用transpose来进行轴的转置:
arr = np.arange(16).reshape((2, 2, 4))
arr
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
arr.transpose((1, 0, 2))
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
上面的transpose((1, 0, 2)) 怎么理解呢?
其含义是将x,y轴对调,z轴保持不变。
上面我们通过使用reshape((2, 2, 4))方法创建了一个3维,也就是3个轴的数组。 其shape是 2 * 2 * 4 。
先看下对应关系:
(0,0)-》 [ 0, 1, 2, 3]
(0,1)-》 [ 4, 5, 6, 7]
(1,0)-》 [ 8, 9, 10, 11]
(1,1)-》 [12, 13, 14, 15]
转换之后:
(0,0)-》 [ 0, 1, 2, 3]
(0,1)-》 [ 8, 9, 10, 11]
(1,0)-》[ 4, 5, 6, 7]
(1,1)-》 [12, 13, 14, 15]
于是得到了我们上面的的结果。
多维数组的轴转换可能比较复杂,大家多多理解。
还可以使用 swapaxes 来交换两个轴,上面的例子可以重写为:
arr.swapaxes(0,1)
本文已收录于 http://www.flydean.com/09-python-numpy-ndarray/
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!
NumPy之:ndarray多维数组操作的更多相关文章
- NumPy 之 ndarray 多维数组初识
why 回顾我的数据分析入门, 最开始时SPSS+EXCEL,正好15年初是上大一下的时候, 因为统计学的还蛮好的, SPSS傻瓜式操作,上手挺方便,可渐渐地发现,使用软件的最不好的地方是不够灵活, ...
- python中numpy库ndarray多维数组的的运算:np.abs(x)、np.sqrt(x)、np.modf(x)等
numpy库提供非常便捷的数组运算,方便数据的处理. 1.数组与标量之间可直接进行运算 In [45]: aOut[45]:array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ ...
- 利用numpy实现多维数组操作图片
1.上次介绍了一点点numpy的操作,今天我们来介绍它如何用多维数组操作图片,这之前我们要了解一下色彩是由blue ,green ,red 三种颜色混合而成,0:表示黑色 ,127:灰色 ,255:白 ...
- Python数据分析 | Numpy与1维数组操作
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/33 本文地址:http://www.showmeai.tech/article-det ...
- 一、Numpy库与多维数组
# Author:Zhang Yuan import numpy as np '''重点摘录: 轴的索引axis=i可以理解成是根据[]层数来判断的,0表示[],1表示[[]]... Numpy广播的 ...
- matlab学习笔记11_1低维数组操作
一起来学matlab-matlab学习笔记11 11_1 低维数组操作repmat函数,cat函数,diag函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考书籍 <matlab ...
- python的二维数组操作
需要在程序中使用二维数组,网上找到一种这样的用法: ? 1 2 3 4 5 6 #创建一个宽度为3,高度为4的数组 #[[0,0,0], # [0,0,0], # [0,0,0], # [0,0,0] ...
- numpy基础教程--二维数组的转置
使用numpy库可以快速将一个二维数组进行转置,方法有三种 1.使用numpy包里面的transpose()可以快速将一个二维数组转置 2.使用.T属性快速转置 3.使用swapaxes(1, 0)方 ...
- 06-01 Java 二维数组格式、二维数组内存图解、二维数组操作
二维数组格式1 /* 二维数组:就是元素为一维数组的一个数组. 格式1: 数据类型[][] 数组名 = new 数据类型[m][n]; m:表示这个二维数组有多少个一维数组. n:表示每一个一维数组的 ...
随机推荐
- c++反汇编 switch
switch 线性处理 24: int nIndex = 0; 01377EBE C7 45 F8 00 00 00 00 mov dword ptr [nIndex],0 25: scanf(&qu ...
- CUDA Cudnn pytorch 安装及错误 RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED解决
看我结论,大家试试看最后装pytorch看行不行,不行就去冲了PyTorch /Doge ubuntu 20.04 下安装CUDA,参考这个博主写的,先看显卡支持的最高CUDA版本,之后找一个较新 ...
- java例题_32 取一个整数a从右端开始的4~7位
1 /*32 [程序 32 左移右移] 2 题目:取一个整数 a 从右端开始的 4-7 位. 3 */ 4 5 /*分析 6 * 从右端开始的第四位相当于原数除以1000后结果的最后一位数, 7 * ...
- 2021精选 Java面试题附答案(一)
1.什么是Java Java是一门面向对象的高级编程语言,不仅吸收了C++语言的各种优点,比如继承了C++语言面向对象的技术核心.还摒弃了C++里难以理解的多继承.指针等概念,,同时也增加了垃圾回收机 ...
- 201871030103-陈荟茹 实验二 个人项目―《D{0-1}KP问题》项目报告
项目 内容 课程班级博客链接 班级博客链接 这个作业要求链接 作业要求链接 我的课程学习目标 1.理解掌握软件设计的过程中的各个环节2.掌握github的使用,将自己的项目上传至githu中 这个作业 ...
- [解决] Assertion `srcIndex < srcSelectDimSize` failed.
在finetune Chinese GPT2的时候遇到如上错误,错误原因index越界,原始代码中给定的输入长度是1024,但是我使用模型可接受的输入长度是512,把输入长度都改为512,错误解决
- c# 输出一个数组
关于C#输出一个数组最普遍的方法就是用for 循环语句写 如: int[] a = new int[10];for (int i = 0; i < a.Length; i++) { a[i] = ...
- Array.prototype.fill 填充值被复用的问题
考察如下示例代码: // 创建二维数组 const arr = Array(2).fill([]); // 操作第一个元素 arr[0].push(1); // 结果是操作了所有数组 console. ...
- 自动化kolla-ansible部署ubuntu20.04+openstack-victoria之镜像制作ubuntu16.04-16
自动化kolla-ansible部署ubuntu20.04+openstack-victoria之镜像制作ubuntu16.04-16 欢迎加QQ群:1026880196 进行交流学习 制作Ope ...
- Spring Boot+MySQL+Spring Data JPA一个Web的Demo
2020.06.23 更新 1 概述 一个简单的web项目配合MySQL+Hibernate+Tomcat的简单示例demo,很容易在此基础上扩展成自己的项目. 2 创建工程 笔者IDE为Intell ...