题目链接

大意

给定\(A,B\)两个数组,让他们进行匹配。

我们称\(A_i\)与\(B_j\)的匹配是稳定的,当且仅当目前所剩元素不存在\(A_x\)或\(B_y\)使得

\(A_i\oplus B_j<A_i\oplus B_y\)\(A_i\oplus B_j<A_x\oplus B_j\)成立

问所有稳定匹配的情况中\(A_i\oplus B_j\)之和最大的是多少。

思路

考虑找到当前异或和最大的一对\(A_i\oplus B_j\),那么不会存在一个\(A_x\)或\(B_y\)可以使得它不稳定,所以这对\(A_i\oplus B_j\)一定会被计入答案。

所以我们每次只用找最大的\(A_i\oplus B_j\)就行了。

考虑如何查找出最大的\(A_i\oplus B_j\):

我们可以使用两颗Trie树分别维护出\(A,B\)的信息。

贪心地想,我们每次查找从高位开始,走完全相反的两个方向(如果可以走),一定会比不走相反的方向优。

这样查找可以满足双方面最大,即找出来的\(A_i,B_j\)一定是会计入答案的(尽管可能不是当前最大的\(A_i\oplus B_j\))。

因为如果该点对没计入到答案,那么当前一定会存在更优的某个\(A_x\)或\(B_y\)使得它不稳定,那么在查找的途中,一定就会进入另一条更优的支路。

所以这样查找依旧可以满足答案的正确性。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=100005;
int K,N;
long long Ans;
struct Tree{
int Cnt,Root;
struct Node{
int val,dep;
int ch[2];
}s[MAXN*31];
void Insert(int rt,int val,int dep){
s[rt].val++;s[rt].dep=dep;
if(dep==-1)return ;
int u=(1&(val>>dep));
if(!s[rt].ch[u])s[rt].ch[u]=++Cnt;
Insert(s[rt].ch[u],val,dep-1);
}
}T1,T2;
void Clear(){
for(int i=1;i<=T1.Cnt;i++)T1.s[i].ch[0]=T1.s[i].ch[1]=T1.s[i].dep=T1.s[i].val=0;
for(int i=1;i<=T2.Cnt;i++)T2.s[i].ch[0]=T2.s[i].ch[1]=T2.s[i].dep=T2.s[i].val=0;
T1.Root=T2.Root=T1.Cnt=T2.Cnt=1;Ans=0;
}
void Query(){
int rt1=T1.Root,rt2=T2.Root;
for(int i=30;i>=0;i--){
if(T1.s[T1.s[rt1].ch[0]].val&&T2.s[T2.s[rt2].ch[1]].val)
rt1=T1.s[rt1].ch[0],rt2=T2.s[rt2].ch[1],Ans+=(1<<i);
else if(T1.s[T1.s[rt1].ch[1]].val&&T2.s[T2.s[rt2].ch[0]].val)
rt1=T1.s[rt1].ch[1],rt2=T2.s[rt2].ch[0],Ans+=(1<<i);
else if(T1.s[T1.s[rt1].ch[0]].val&&T2.s[T2.s[rt2].ch[0]].val)
rt1=T1.s[rt1].ch[0],rt2=T2.s[rt2].ch[0];
else if(T1.s[T1.s[rt1].ch[1]].val&&T2.s[T2.s[rt2].ch[1]].val)
rt1=T1.s[rt1].ch[1],rt2=T2.s[rt2].ch[1];
T1.s[rt1].val--;T2.s[rt2].val--;
}
}
int main(){
scanf("%d",&K);
while(K--){
Clear();
scanf("%d",&N);
for(int i=1,x;i<=N;i++)
scanf("%d",&x),T1.Insert(T1.Root,x,30);
for(int i=1,x;i<=N;i++)
scanf("%d",&x),T2.Insert(T2.Root,x,30);
for(int i=1;i<=N;i++)Query();
printf("%lld\n",Ans);
}
}

后记

其实题意不能简单地化为让\(A\),\(B\)两两匹配的异或和最大。

(因为要满足稳定条件,且若的按和最大去做会被以下数据卡掉)

1
2
1 2
2 7

正解为6,手跑和最大为8

【HDU6687】Rikka with Stable Marriage(Trie树 贪心)的更多相关文章

  1. 【BZOJ3261】最大异或和 Trie树+贪心

    [BZOJ3261]最大异或和 Description 给定一个非负整数序列 {a},初始长度为 N.       有   M个操作,有以下两种操作类型:1 .A x:添加操作,表示在序列末尾添加一个 ...

  2. poj3764(dfs+Trie树+贪心)

    题目链接:http://poj.org/problem?id=3764 分析:好题!武森09年的论文中有道题CowXor,求的是线性结构上的,连续序列的异或最大值,用的办法是先预处理出前n项的异或值, ...

  3. BZOJ4567 [Scoi2016]背单词 【trie树 + 贪心】

    题目链接 BZOJ4567 题解 题意真是鬼畜= = 意思就是说我们应先将一个串的所有后缀都插入之后再插入这个串,产生代价为其到上一个后缀的距离 我们翻转一下串,转化为前缀,就可以建\(trie\)树 ...

  4. 【bzoj3261】【最大异或和】可持久化trie树+贪心

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61705397 Description 给定一个非 ...

  5. [SCOI2016] 背单词 (Trie 树,贪心)

    题目链接 大致题意 给你 \(n\) 个字符串, 要求你给出最小的代价. 对于每个字符串: 1.如果它的后缀在它之后,那么代价为 \(n^2\). 2.如果一个字符串没有后缀,那么代价为 \(x\), ...

  6. 51nod 1526 分配笔名(Trie树+贪心)

    建出Trie树然后求出一个点子树中有多少笔名和真名.然后贪心匹配即可. #include<iostream> #include<cstring> #include<cst ...

  7. 【BZOJ4260】Codechef REBXOR Trie树+贪心

    [BZOJ4260]Codechef REBXOR Description Input 输入数据的第一行包含一个整数N,表示数组中的元素个数. 第二行包含N个整数A1,A2,…,AN. Output ...

  8. [CSP-S模拟测试]:big(Trie树+贪心)

    题目描述 你需要在$[0,2^n)$中选一个整数$x$,接着把$x$依次异或$m$个整数$a_1~a_m$.在你选出$x$后,你的对手需要选择恰好一个时刻(刚选完数时.异或一些数后或是最后),将$x$ ...

  9. @hdu - 6687@ Rikka with Stable Marriage

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个稳定婚姻匹配问题,其中第 i 个男生与第 j 个女生之间 ...

随机推荐

  1. Flutter 让你的Dialog脱胎换骨吧!(Attach,Dialog,Loading,Toast)

    前言 Q:你一生中闻过最臭的东西,是什么? A:我那早已腐烂的梦. 兄弟萌!!!我又来了! 这次,我能自信的对大家说:我终于给大家带了一个,能真正帮助大家解决诸多坑比场景的pub包! 将之前的flut ...

  2. set类型转string[] 正确写法

    测试源码: 1 @org.junit.Test 2 public void testSetType(){ 3 //测试set类型转string[] 4 // 5 Set<String> s ...

  3. spring cloud --- Zuul --- 心得

    spring boot      1.5.9.RELEASE spring cloud    Dalston.SR1 1.前言 什么是 Zuul? Zuul是微服务网关,与Gateway类似 ,根据请 ...

  4. C++高并发场景下读多写少的解决方案

    C++高并发场景下读多写少的解决方案 概述 一谈到高并发的解决方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也 ...

  5. 老旧业务重构案例——IM系统如何设计

    一年半之前刚来到这个团队,便遭遇了一次挑战: 当时有个CRM系统,老是出问题,之前大的优化进行了4次小的优化进行了10多次,要么BUG重复出现,要么性能十分拉胯,总之体验是否糟糕!技术团队因此受到了诸 ...

  6. 小程序onShareAppMessage有点迷

    小程序遇到的问题 起因 目前项目需求是分享时携带参数去进行裂变,但是在查看微信文档后发现有onShareAppMessage这个页面处理事件可以使用.事件可以使用return一个Object,用于自定 ...

  7. 【转载】select case break引发的血案

    原文请看:select case break引发的血案 我也遇到了,浪费了一个多小时. 牢记: for { switch var1{ case "not match": go En ...

  8. 【失败经验分享】android下使用支持opencl的cv::dft()

    1.使用了UMat,但是并未使用GPU计算 cv::dft()函数的定义是: void cv::dft( InputArray _src0, OutputArray _dst, int flags, ...

  9. 【记录一个问题】android ndk下设置线程的亲缘性,总有两个核无法设置成功

    参考了这篇文章:https://blog.csdn.net/lanyzh0909/article/details/50404664 大体的代码如下: #include <pthread.h> ...

  10. 使用EdgyGeo Cesium工具查询下载数据集

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ EdgyGeo, Inc. 带来了一件非常棒的工作支撑架构.工程 ...