NOIP模拟38:b
这是T2。
一个容斥(其实也可以欧拉反演做,但是我不会)。
首先开一个桶,记录第i行的j有多少个。
然后枚举1~\(maxn\),枚举他的值域内的倍数,记录倍数在第i行有多少个,将个数记录在\(c[i][j]\)里
然后计算对每个j\(\prod_{i=1}^{n}(c[i][j]+1)\)
这个式子的意义是他的倍数的选法方案数,其中加一表示这一行不选的情况,展开后有一个1的常数项表示所有行都不选,是非法的,要减掉。
所以最终的方案数是他减一。
这是他倍数的选择方案,其中包括了以他为\(gcd\)的方案以及以他的倍数为\(gcd\)的方案。
所以要计算出以他的倍数为\(gcd\)的方案后在减掉才是以j为\(gcd\)的方案数,这一过程是逆推,对于一些i来说他的所有倍数(1倍除外)都不在值域内,他们的连乘结果就是以他们为\(gcd\)的方案数,可以以他们为起点逆推。
Code
#include<bits/stdc++.h>
using namespace std;
namespace STD
{
#define rr register
typedef long long ll;
const int inf=INT_MAX;
const int mod=1e9+7;
const int M=1e5+4;
const int N=22;
int n,m,maxn=-inf;
ll ton[N][M],cnt[N][M],c[M];
template<typename type>
inline type cmax(rr type x,rr type y){return x>y?x:y;}
int read()
{
rr int x_read=0,y_read=1;
rr char c_read=getchar();
while(c_read<'0'||c_read>'9')
{
if(c_read=='-') y_read=-1;
c_read=getchar();
}
while(c_read<='9'&&c_read>='0')
{
x_read=(x_read<<3)+(x_read<<1)+(c_read^48);
c_read=getchar();
}
return x_read*y_read;
}
};
using namespace STD;
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
int a=read();
ton[i][a]++;
maxn=cmax(maxn,a);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=maxn;j++)
for(int k=1;k*j<=maxn;k++)
cnt[i][j]+=ton[i][k*j];
for(rr int i=1;i<=maxn;i++)
{
c[i]=1ll;
for(rr int j=1;j<=n;j++)
c[i]=(c[i]*(cnt[j][i]+1))%mod;
c[i]--;
}
for(int i=maxn;i;i--)
for(int j=2;j*i<=maxn;j++)
c[i]=(c[i]-c[i*j]+mod)%mod;
ll ans=0ll;
for(rr int i=1;i<=maxn;i++)
ans=(ans+c[i]*i%mod)%mod;
printf("%lld\n",ans);
}
NOIP模拟38:b的更多相关文章
- Noip模拟38 2021.8.13
T1 a 跟入阵曲很像,但是忘记入阵曲这题的思路是什么了 这里再提一下,入阵曲是子矩阵和是$k$的倍数,这道题目是子矩阵和是在一段区间内$[L,R]$ 因为这道题$n$特别小,$m$较大,考虑复杂度为 ...
- 2021.8.13考试总结[NOIP模拟38]
T1 a 入阵曲.枚举矩形上下界,之后从左到右扫一遍.用树状数组维护前缀和加特判可以$A$,更保险要脸的做法是双指针扫,因为前缀和单调不减. $code:$ 1 #include<bits/st ...
- NOIP模拟 38
liu_runda的题! 错过辽QAQ T1虽然没用题解的损益法,但是用高精%还能过.. 没想到敲完就过编译了,还以为要调一天呢 高精度的阴影没了- T2的思路很巧妙 首先一个区间最多有一种颜色占一半 ...
- NOIP 模拟 $38\; \rm c$
题解 \(by\;zj\varphi\) 发现就是一棵树,但每条边都有多种不同的颜色,其实只需要保留随便三种颜色即可. 直接点分治,将询问离线,分成一端为重心,和两端都不为重心的情况. 每次只关心经过 ...
- NOIP 模拟 $38\; \rm b$
题解 \(by\;zj\varphi\) 考虑转化问题,将计算最大公约数换为枚举最大公约数. 设 \(sum_i\) 为最大公约数为 \(i\) 的方案数,可以容斥求解,\(sum_i=f_i-\su ...
- NOIP 模拟 $38\; \rm a$
题解 \(by\;zj\varphi\) 压行. 枚举两行,将中间的行压成一行,然后直接前缀和加二分. 注意边界细节问题. Code #include<bits/stdc++.h> #de ...
- noip模拟38
\(\color{white}{\mathbb{深秋总有廖落处,雁归每是菊败时,名之以:残菊}}\) 这场比赛几乎全场都在打暴力,几乎人均切掉的 \(t1\) 没有想到双指针,\(t3\) 的暴力也没 ...
- NOIP模拟38:a
这是T1. 考场上思路与正解就差个前缀,打的线段树,因为其巨大常数快乐挂掉...... 正解复杂度是\(O(n^2m)\),其实再挂个\(log\)也能过,但是需要用常数极其优秀的树状数组 ...
- NOIP模拟17.9.22
NOIP模拟17.9.22 前进![问题描述]数轴的原点上有一只青蛙.青蛙要跳到数轴上≥
随机推荐
- 复杂多变场景下的Groovy脚本引擎实战
一.前言 因为之前在项目中使用了Groovy对业务能力进行一些扩展,效果比较好,所以简单记录分享一下,这里你可以了解: 为什么选用Groovy作为脚本引擎 了解Groovy的基本原理和Java如何集成 ...
- 论文笔记:(2021CVPR)PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
目录 摘要 1.引言 2.相关工作 将点云映射到常规二维或三维栅格(体素) 基于MLPs的点表示学习 基于点卷积的点表示学习 动态卷积和条件卷积 3.方法 3.1 回顾 3.2 动态内核组装 Weig ...
- LAMP和LNMP环境搭建的艰辛历程
目录 1. LAMP环境的搭建 1. Apache 安装apache遇到的问题 2. mysql 登录mysql的方法 3. PHP 2. Lnmp环境的搭建 1. nginx 2. PHP 3. 配 ...
- Android全新UI编程 - Jetpack Compose 超详细教程
1. 简介 Jetpack Compose是在2019Google i/O大会上发布的新的库.Compose库是用响应式编程的方式对View进行构建,可以用更少更直观的代码,更强大的功能,能提高开发速 ...
- 如何读懂Framework源码?如何从应用深入到Framework?
如何读懂Framework源码? 首先,我也是一个应用层开发者,我想大部分有"如何读懂Framework源码?"这个疑问的,应该大都是应用层开发. 那对于我们来讲,读源码最大的问题 ...
- Java JVM【笔记】
Java JVM[笔记] Java的平台无关性是如何实现的? Java源码首先被编译成字节码,再由不同的平台的JVM进行解析,Java语言在不同的平台上运行时不需要进行重新编译,Java虚拟机在执行字 ...
- Java基础技术JVM面试【笔记】
Java基础技术JVM面试[笔记] JVM JVM 对 java 类的使用总体上可以分为两部分:一是把静态的 class 文件加载到 JVM 内存,二是在 JVM 内存中进行 Java 类的生命周期管 ...
- javascript,html,正则表达式,邮箱密码验证
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- 从350ms到80ms,揭秘阿里工程师 iOS 短视频优化方案
内容作为 App 产品新的促活点,受到了越来越多的重视与投入,短视频则是增加用户粘性.增加用户停留时长的一把利器.短视频的内容与体验直接关系到用户是否愿意长时停留,盒马也提出全链路内容视频化的规划,以 ...
- prism 中的 自定义region
参考网址: https://blog.csdn.net/weixin_30872499/article/details/98673059 并不是所有控件都可以被用作Region了吗?我们将Gird块的 ...