ROC and AUC
概
AUC常常在文章中作为评价一个分类器优劣的指标, 却总是忘记其原由, 索性记上一笔.
TPR, FPR
首先理解TP, FP, FN, TN的概念, 下面是其对应的类型. 这里, P表示正样本, 而N表示负样本, 下表中的行为真实的标签, 列为预测的标签.
预测\真实 | P | N |
---|---|---|
P | TP(True Positive) | FP(False Positive) |
N | FN(False Negative) | TN(True Negative) |
则
\]
即TPR表示正样本分类正确的概率, FPR表示负样本判断错误(即取伪)的概率.
问题是如何通过这俩个指标反映一个二分类器的优劣, 首先假设二分类器由下列方式定义:
\]
其中\(T\)便是阈值, 即超过一定的阈值判断其为正样本.
注: 其实此说法有瑕疵, 因为完全有可能选择超过一定的阈值判断其为负样本时分类器效果"更好", 但是这种争论没有多大意义, 逼近只需取\(f'(x)=-f(x)\)即可.
显示强调\(T\)的存在, 有\(\mathrm{TPR}(T)\)和\(\mathrm{FPR}(T)\), 另外, 此时\(f\)可以看成一个随机变量, 不妨令\(Y_+\)表示\(f\)的输入\(X\)为正样本时的随机变量, \(Y_-\)表示\(f\)的输入\(X\)为负样本时的随机变量, 则
\mathrm{FPR}(T)=P(Y_->T) = \int_{T}^{\infty} p(y|-) \mathrm{d}y.
\]
ROC and AUC
ROC曲线就是以\(y=\mathrm{TPR}(T)\), \(x=\mathrm{FPR}(T)\)的曲线, \(T\)在这里充当一个中间变量.
AUC就是ROC曲线下的面积, 其意义是概率\(P(Y_+>Y_-)\):
\mathrm{AUC}
&= \int_0^1 y(x) \mathrm{d}x = \int_0^1 \mathrm{TPR}(\mathrm{FPR}^{-1}(x)) \mathrm{d}x \\
&= \int_{+\infty}^{-\infty} \mathrm{TPR}(T) \mathrm{FPR}'(T) \mathrm{d}T \\
&= \int_{+\infty}^{-\infty} \int_{T}^{\infty} p(y|+) \cdot(-p(T|-)) \mathrm{d}y \mathrm{d}T \\
&= \int_{-\infty}^{+\infty} p(T|-) \int_{T}^{\infty} p(y|+) \mathrm{d}y \mathrm{d}T \\
&= \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} I(y>T)p(y|+) p(T|-) \mathrm{d}y \mathrm{d}T \\
&= P(Y_+ > Y_-).
\end{array}
\]
当然很自然的评价指标是, AUC距离0.5越远越好(这么说是因为AUC=0, 实际上只需\(f'(x)=-f(x)\)).
代码
ROC and AUC的更多相关文章
- ROC和AUC介绍以及如何计算AUC ---好!!!!
from:https://www.douban.com/note/284051363/?type=like 原帖发表在我的博客:http://alexkong.net/2013/06/introduc ...
- Area Under roc Curve(AUC)
AUC是一种用来度量分类模型好坏的一个标准. ROC分析是从医疗分析领域引入了一种新的分类模型performance评判方法. ROC的全名叫做Receiver Operating Character ...
- 【转】ROC和AUC介绍以及如何计算AUC
转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器( ...
- ROC和AUC介绍以及如何计算AUC
原文:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 为什么使用ROC曲线 既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因 ...
- ROC和AUC理解
一. ROC曲线概念 二分类问题在机器学习中是一个很常见的问题,经常会用到.ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under th ...
- 信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC
原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常 ...
- 评估分类器性能的度量,像混淆矩阵、ROC、AUC等
评估分类器性能的度量,像混淆矩阵.ROC.AUC等 内容概要¶ 模型评估的目的及一般评估流程 分类准确率的用处及其限制 混淆矩阵(confusion matrix)是如何表示一个分类器的性能 混淆矩阵 ...
- ROC与AUC原理
来自:https://blog.csdn.net/shenxiaoming77/article/details/72627882 来自:https://blog.csdn.net/u010705209 ...
- ROC,AUC,Precision,Recall,F1的介绍与计算(转)
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
- ROC,AUC,Precision,Recall,F1的介绍与计算
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
随机推荐
- Java交换数组元素
Java 交换数组元素 代码示例 import java.util.Arrays; import java.util.Collections; import java.util.List; impor ...
- 22 SHELL 获取当前路径
常见的一种误区,是使用 pwd 命令,该命令的作用是"print name of current/working directory",这才是此命令的真实含义,当前的工作目录,这里 ...
- Java Swing布局管理器GridBagLayout的使用示例 [转]
GridBagLayout是java里面最重要的布局管理器之一,可以做出很复杂的布局,可以说GridBagLayout是必须要学好的的, GridBagLayout 类是一个灵活的布局管理器,它不要求 ...
- 转 Android Lifecycle、ViewModel和LiveData
转自:https://www.jianshu.com/p/982545e01d0a 1.概述 在I / O '17的时候,其中一个重要的主题是Architecture Components.这是一个官 ...
- Linux:find命令中
默认情况下, find 每输出一个文件名, 后面都会接着输出一个换行符 ('\n'), 因此我们看到的 find 的输出都是一行一行的: ls -l total 0 -rw-r--r-- 1 root ...
- When does compiler create default and copy constructors in C++?
In C++, compiler creates a default constructor if we don't define our own constructor (See this). Co ...
- 【笔记】草履虫也能看懂的ELK搭建流程
环境需要 Elasticsearch需要JAVA环境,至少是JDK1.8 elasticsearch 不允许root用户使用,需要新增个elk用户 如果觉得官网下载太慢,可以使用这个 https:// ...
- 分布式全局ID生成器原理剖析及非常齐全开源方案应用示例
为何需要分布式ID生成器 **本人博客网站 **IT小神 www.itxiaoshen.com **拿我们系统常用Mysql数据库来说,在之前的单体架构基本是单库结构,每个业务表的ID一般从1增,通过 ...
- 如何在子线程中更新UI
一:报错情况 android.view.ViewRootImpl$CalledFromWrongThreadException: Only the original thread that creat ...
- c#中Array,ArrayList 与List<T>的区别、共性与转换
本文内容来自我写的开源电子书<WoW C#>,现在正在编写中,可以去WOW-Csharp/学习路径总结.md at master · sogeisetsu/WOW-Csharp (gith ...