题目传送门

题目大意

给出一个 \(n\) 个点 \(m\) 条边的有向图,问每一条边在多少个最短路径中出现。

\(n\le 1500,m\le 5000\)

思路

算我孤陋寡闻了。。。

很显然,我们需要枚举一个起点 \(s\),然后跑一遍最短路,对于一条边 \((u,v,w)\),如果存在 \(\text{dist}(u)+w=\text{dist}(v)\),可以想到 \((u,v)\) 一定会产生答案,我们定义此类边叫做“最短路径图上的边”,它们构成的图叫做“最短路径图”。它有以下两个性质:

  • \(u\to v\) 的最短路径上的子路径 \(a\to b\) 也是最短路径

  • 最短路径图上不存在环

证明:

因为如果有环的话与最短路径图上的边的定义矛盾了,所以显然。

然后根据性质1我们就可以观察到我们可以在这个图上做 topo 排序,求出到 \(u\) 的最短路径数,\(v\) 到其它点的最短路径数,相乘即是答案。

时间复杂度 \(\Theta(VE)\),但是用 SPFA 的话还是可以跑很快的。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000007
#define MAXN 5005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} bool vis[MAXN],ins[MAXN];
int n,m,toop,st[MAXN],to[MAXN],wei[MAXN],nxt[MAXN],head[MAXN],dist[MAXN]; void Add_Edge (int u,int v,int w){
to[++ toop] = v,st[toop] = u,wei[toop] = w,nxt[toop] = head[u],head[u] = toop;
} void SPFA (int s){
queue <int> q;
while (!q.empty()) q.pop ();
memset (vis,0,sizeof (vis));
memset (dist,0x7f,sizeof (dist));
dist[s] = 0,vis[s] = 1,q.push (s);
while (!q.empty()){
int u = q.front();q.pop ();vis[u] = 0;
for (Int i = head[u];i;i = nxt[i]){
int v = to[i],w = wei[i];
if (dist[v] > dist[u] + w){
dist[v] = dist[u] + w;
if (!vis[v]) vis[v] = 1,q.push (v);
}
}
}
for (Int i = 1;i <= m;++ i) if (dist[to[i]] == dist[st[i]] + wei[i]) ins[i] = 1;else ins[i] = 0;
} int que[MAXN],deg[MAXN],ans[MAXN],cnt1[MAXN],cnt2[MAXN];
void Topo (int S){
memset (deg,0,sizeof (deg));
memset (cnt1,0,sizeof (cnt1));
memset (cnt2,0,sizeof (cnt2));
int tot = 0;cnt1[S] = 1;
for (Int i = 1;i <= m;++ i) if (ins[i]) deg[to[i]] ++;
queue <int> q;while (!q.empty()) q.pop();q.push (S);
while (!q.empty()){
int u = q.front();q.pop (),que[++ tot] = u;
for (Int i = head[u];i;i = nxt[i]){
if (!ins[i]) continue;
(cnt1[to[i]] += cnt1[u]) %= mod;
if (!(-- deg[to[i]])) q.push (to[i]);
}
}
for (Int k = tot;k >= 1;-- k){
int u = que[k];cnt2[u] ++;
for (Int i = head[u];i;i = nxt[i]){
if (!ins[i]) continue;
(cnt2[u] += cnt2[to[i]]) %= mod;
}
}
} void Solve (int S){
SPFA (S),Topo (S);
for (Int i = 1;i <= m;++ i) if (ins[i]) (ans[i] += 1ll * cnt1[st[i]] * cnt2[to[i]] % mod) %= mod;
} signed main(){
read (n,m);
for (Int i = 1,u,v,w;i <= m;++ i) read (u,v,w),Add_Edge (u,v,w);
for (Int S = 1;S <= n;++ S) Solve (S);
for (Int i = 1;i <= m;++ i) write (ans[i]),putchar ('\n');
return 0;
}

题解 [HAOI2012]道路的更多相关文章

  1. 洛谷 P2505 [HAOI2012]道路 解题报告

    P2505 [HAOI2012]道路 题目描述 C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它 ...

  2. JZYZOJ1525 HAOI2012道路 堆优化的dijkstra+pair

    From Tyvj Guest ☆[haoi2012]道路                 描述 Description     C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当 ...

  3. 题解 [APIO2013]道路费用

    link Description 幸福国度可以用 N 个城镇(用 1 到 N 编号)构成的集合来描述,这些城镇 最开始由 M 条双向道路(用 1 到 M 编号)连接.城镇 1 是中央城镇.保证一个 人 ...

  4. [HAOI2012]道路

    题目描述 C国有n座城市,城市之间通过m条[b]单向[/b]道路连接.一条路径被称为最短路,当且仅当不存在从 它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同. ...

  5. [HAOI2012]道路(最短路DAG上计数)

    C国有n座城市,城市之间通过m条[b]单向[/b]道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同.我们需要对每 ...

  6. 洛谷P2505 [HAOI2012]道路(最短路计数)

    传送门 早上模拟赛考这题,结果竟然看错题目了orz 然后下午看完题解自己做的时候空间开小了白WA了好久orz 首先,如果以$S$为起点,一条边$(u,v)$在最短路上,则$dis[u]+edge[i] ...

  7. 洛谷P2505||bzoj2750 [HAOI2012]道路 && zkw线段树

    https://www.luogu.org/problemnew/show/P2505 https://www.lydsy.com/JudgeOnline/problem.php?id=2750 神奇 ...

  8. P2505 [HAOI2012]道路

    传送门 统计每条边被最短路经过几次,点数不大,考虑计算以每个点为起点时对其他边的贡献 对于某个点 $S$ 为起点的贡献,首先跑一遍最短路,建出最短路的 $DAG$ 考虑 $DAG$ 上的某条边被以 $ ...

  9. # HNOI2012 ~ HNOI2018 题解

    HNOI2012 题解 [HNOI2012]永无乡 Tag:线段树合并.启发式合并 联通块合并问题. 属于\(easy\)题,直接线段树合并 或 启发式合并即可. [HNOI2012]排队 Tag:组 ...

随机推荐

  1. idea上传项目到github 2019

    记录一下自己查找的从idea上传项目到github的总结 1.默认本地已经安装好git.exe ,idea也已经和git进行匹配 File-setting-versionControl-git-Tes ...

  2. string类型数据的操作指令

    1. 2. 3. 4. 5. 6. 7. 8. 9. 从右到左是索引从-1开始 10. 11. 12. 13. 14. 15.

  3. 源码解析.Net中Host主机的构建过程

    前言 本篇文章着重讲一下在.Net中Host主机的构建过程,依旧延续之前文章的思路,着重讲解其源码,如果有不知道有哪些用法的同学可以点击这里,废话不多说,咱们直接进入正题 Host构建过程 下图是我自 ...

  4. 剑指 Offer 38. 字符串的排列

    剑指 Offer 38. 字符串的排列 输入一个字符串,打印出该字符串中字符的所有排列. 你可以以任意顺序返回这个字符串数组,但里面不能有重复元素. 示例: 输入:s = "abc" ...

  5. Smooth

      考场\(AC\),还是很开心的.   考虑这题让你干啥,就是给你一堆素数,然后让你用他们去构造数,求其中第\(k\)小的.   我们可以用系数累乘的方式,同时利用小根堆实现有序,加一个优化,就过了 ...

  6. Python习题集(十二)

    每天一习题,提升Python不是问题!!有更简洁的写法请评论告知我! https://www.cnblogs.com/poloyy/category/1676599.html 题目 请写一个函数fin ...

  7. adb 常用命令大全(3)- 查看手机设备信息

    查看手机型号 adb shell getprop ro.product.model 查看电池状况 adb shell dumpsys battery 其中 scale 代表最大电量,level 代表当 ...

  8. K8s工作流程详解

    在学习k8s工作流程之前,我们得再次认识一下上篇k8s架构与组件详解中提到的kube-controller-manager一个k8s中许多控制器的进程的集合. 比如Deployment 控制器(Dep ...

  9. SQLSERVER存储过程基础

    SQLSERVER存储过程基础 1.声明变量 DECLARE     @F001  SMALLINT,  (三元素,声明declare+变量名+类型) @F002  INTEGER, @F003  V ...

  10. 剑指 Offer 60. n个骰子的点数

    剑指 Offer 60. n个骰子的点数 把n个骰子扔在地上,所有骰子朝上一面的点数之和为s.输入n,打印出s的所有可能的值出现的概率. 你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n ...