Bzoj3930: [CQOI 2015] 选数 & COGS2699: [CQOI 2015] 选数加强版
题面
Sol
非加强版可以枚举AC这里不再讲述
设\(f(i)\)表示在\([L, H]\)取\(N\)个,\(gcd为i\)的方案数
\(F(i)=\sum_{i|d}f(d)\)表示\([L,H]\)取\(N\)个,\(gcd为i\)的倍数的方案数
易得\(F(i)=(\lfloor\frac{H}{i}\rfloor-\lfloor\frac{L-1}{i}\rfloor)^N\)
直接莫比乌斯反演得到\(f(K)=\sum_{K|d}\mu(\frac{d}{K})F(d)\)
把\(\frac{d}{K}\)替换掉\(f(K)=\sum_{i=1}^{\lfloor\frac{H}{K}\rfloor}\mu(i)F(K*i)\)
分块\(F(K*i)\)杜教筛出\(\mu\)的前缀和就可以了
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e6 + 1), Zsy(1e9 + 7);
IL ll Read(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int prime[_], mu[_], s[_], num, L, H, N, K, MAXN;
map <int, int> Mu;
bool isprime[_];
IL ll Pow(RG ll x, RG ll y){
RG ll ret = 1;
for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;
return ret;
}
IL void Prepare(){
isprime[1] = 1; mu[1] = 1;
for(RG int i = 2; i < MAXN; ++i){
if(!isprime[i]){ prime[++num] = i; mu[i] = -1; }
for(RG int j = 1; j <= num && i * prime[j] < MAXN; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{ mu[i * prime[j]] = 0; break; }
}
mu[i] += mu[i - 1];
}
}
IL int SumMu(RG int n){
if(n < MAXN) return mu[n];
if(Mu[n]) return Mu[n];
RG int ans = 1;
for(RG int i = 2, j; i <= n; i = j + 1){
j = n / (n / i);
ans -= 1LL * (j - i + 1) * SumMu(n / i) % Zsy;
ans = (ans + Zsy) % Zsy;
}
return Mu[n] = ans;
}
int main(RG int argc, RG char* argv[]){
N = Read(); K = Read(); L = (Read() - 1) / K; H = Read() / K;
RG int ans = 0, lst = 0, now; MAXN = min(H + 1, _); Prepare();
for(RG int i = 1, j; i <= H; i = j + 1){
j = H / (H / i); if(L / i) j = min(j, L / (L / i));
now = SumMu(j);
ans += 1LL * (now - lst) * Pow(H / i - L / i, N) % Zsy;
ans = (ans % Zsy + Zsy) % Zsy; lst = now;
}
printf("%d\n", ans);
return 0;
}
Bzoj3930: [CQOI 2015] 选数 & COGS2699: [CQOI 2015] 选数加强版的更多相关文章
- python-在定义函数时,不定长参数中,默认值参数不能放在必选参数前面
如果一个函数的参数中含有默认参数,则这个默认参数后的所有参数都必须是默认参数,否则会报错:SyntaxError: non-default argument follows default argum ...
- 任意选若干个不相邻的数得到的和最大【dp】
非相邻数最大和 ///*任意选若干个不相邻的数得到的和最大*/ #include<cstdio> #include<cstring> #include<queue> ...
- 南大算法设计与分析课程OJ答案代码(1)中位数附近2k+1个数、任意两数之和是否等于给定数
问题1 用来测试的,就不说了 问题2:中位数附近2k+1个数 给出一串整型数 a1,a2,...,an 以及一个较小的常数 k,找出这串数的中位数 m 和最接近 m 的小于等于 m 的 k 个数,以及 ...
- Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)
Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...
- js 复选框 全选都选 如果某一个子复选框没选中 则全选按钮不选中
<!DOCTYPE HTML> <html> <head> <meta charset=UTF-8> <title>js 复选框 全选都选 ...
- oracle:ORACLE 实际返回的行数超出请求的行数
写的存储过程,执行后一直报实际返回的行数超出请求的行数的错误. 原因:select prdt_id into prdt_id from.... 两个变量名称相同造成的..哎 第一个变量换成大写..问 ...
- Reset CSS:只选对的,不选"贵"的
玉伯和正淳一起整理的一份 reset.css: /* KISSY CSS Reset 理念:清除和重置是紧密不可分的 特色:1.适应中文 2.基于最新主流浏览器 维护:玉伯(lifesinger@gm ...
- 基于Extjs的web表单设计器 第七节——取数公式设计之取数公式的使用
基于Extjs的web表单设计器 基于Extjs的web表单设计器 第一节 基于Extjs的web表单设计器 第二节——表单控件设计 基于Extjs的web表单设计器 第三节——控件拖放 基于Extj ...
- jquery实现全选、反选、不选
<!DOCTYPE html><html lang="zh-CN"><head><meta charset="UTF-8&quo ...
随机推荐
- 关于Git的版本问题
问题的起源 我在IDEA上不小心修改了文件(加了一行空行)并且被保存了,在GitHub Desktop桌面工具上可以看到changes中有修改记录,并且使用命令行git status也可以看到文件的修 ...
- MySQL数据库基础(二)(约束以及修改数据表)
一,约束以及修改数据表 约束的作用?1.约束保证数据的完整性.一致性:2.约束分为表级约束.列级约束:3.约束类型包括:NOT NULL(非空约束).PRIMARY KEY(主键约束).UNIQUE ...
- bzoj 1171 大sz的游戏& 2892 强袭作战 (线段树+单调队列+永久性flag)
大sz的游戏 Time Limit: 50 Sec Memory Limit: 357 MBSubmit: 536 Solved: 143[Submit][Status][Discuss] Des ...
- Python print 输出到控制台 丢数据
import xlrd import sys,time data = xlrd.open_workbook("C:\Users\Administrator\Desktop\\new1.xls ...
- c++实现一个小算法
题目:有n个格子,每个格子里有坦克,坦克有两滴血,你向格子里投掷炸弹,每次命中坦克他掉一滴血并随机像左或者右移动一个格子,问最少炸几次能把全部坦克炸完. 题解:先向偶数格子投掷炸弹,所有的坦克全跑到奇 ...
- maven The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path错误
对于这个问题的话,请在pom文件中加入 <dependency> <groupId>javax.servlet</groupId> <artifactId&g ...
- FFMpeg for PHP
PHP使用FFMpeg来转换视频格式.Github上搜索FFMPEG,到https://github.com/PHP-FFMpeg/PHP-FFMpeg. For Windows users : Pl ...
- 老男孩Python全栈开发(92天全)视频教程 自学笔记14
day14课程内容: 深浅拷贝 #浅拷贝只能拷贝一层s=[1,'a','b']s1=s.copy()#浅拷贝print(s1)#[1, 'a', 'b']s[0]=2print(s1,s)#[1, ' ...
- nyoj888 取石子(九) 反Nimm博弈
这题就是反Nimm博弈--分析见反Nimm博弈 AC代码 #include <cstdio> #include <cmath> #include <algorithm&g ...
- Docker系统八:Docker的存储驱动
Docker存储驱动 1. Docker存储驱动历史 Docker目前支持的greph driver包括: AUFS device-mapper btrfs overlayfs(重点) 关于各存储驱的 ...