传送门

题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 取模的结果)


好巧妙的转化啊:

构造一个矩阵,把限制关系转化成矩阵的相邻元素不能同时选

1 3  9  27…

2 6 18 54…

4 12 36 108…

然后愉♂悦的状压DP就可以啦

注意每一个既不被$2$又不被$3$整除的数都可以作为矩阵的第一个元素,还有矩阵不一定填满

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,S=(<<)+,P=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,f[N][S];
inline void mod(int &x){if(x>=P) x-=P;}
ll ans=;
int col[N];
void dp(int x){
for(int i=x,r=;i<=n;i*=,r++){
int c=;
for(int j=i;j<=n;j*=,c++);
col[r]=<<c;
//printf("col %d %d\n",r,c);
} int r=;
for(int i=x;i<=n;i*=,r++);
//printf("dp %d %d \n",x,r); f[][]=;col[]=;
for(int i=;i<=r;i++)
for(int j=;j<col[i];j++) if( (j&(j<<))== ){
f[i][j]=;
for(int k=;k<col[i-];k++) if( (j&k)== ) mod(f[i][j]+=f[i-][k]);
//printf("f %d %d %d\n",i,j,f[i][j]);
}
int _=;
for(int j=;j<col[r];j++) mod(_+=f[r][j]);
//printf("_ %d\n",_);
ans=ans*_%P;
}
int main(){
freopen("in","r",stdin);
n=read();
for(int i=;i<=n;i++) if(i% && i%) dp(i);
printf("%lld",ans);
}

BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]的更多相关文章

  1. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  2. BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】

    [题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...

  3. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  4. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  5. 【刷题】BZOJ 2734 [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  6. [HNOI2012]集合选数(状压DP+构造)

    题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...

  7. BZOJ3724 [HNOI2012]集合选数 【状压dp】

    题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...

  8. BZOJ2734 HNOI2012集合选数(状压dp)

    完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...

  9. bzoj2734:[HNOI2012]集合选数(状压DP)

    菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...

随机推荐

  1. Kibana使用高德地图

    Kibana使用高德地图 说明 目前Kibana默认自带的地图全部是英文,更换高德地图对地图汉化 修改配置 1.编辑kibana配置文件kibana.yml,最后面添加 tilemap.url: 'h ...

  2. Spider_Man_5.1 の Mongodb_安装

    先安装: 环境Mac OS X 我是直接用brew来安装的,感觉这个包管理工具,很省心. 安装Homebrew:ruby -e "$(curl -fsSL https://raw.githu ...

  3. Oracle_SQL99_连接查询

    Oracle_SQL99_连接查询 交叉连接 cross join   --交叉连接 cross join --作用:产生两个表的笛卡尔积 select * from emp cross join d ...

  4. 【JSP/Servlet】后台如何获取复选框或可选属性的同名参数

    感觉自己jsp/servlet部分学的太差了--今天突然想到还有这种操作,遂分享之 比如有些时候我们需要使用复选框发送同名数据的时候,后台接收参数是个麻烦事,还有可选属性也是如此 有丰富经验的会想到a ...

  5. dedecms首页调用软件下载地址

    这段时间利用dedecms开发一个软件下载的网站,应客户需求,需要在网站首页调用软件下载地址.在网上查找了一些资料,都没有很好的解决这个问题,后来自己研究了一下,就将自己的方法跟大家共享一下.有不好的 ...

  6. php对数组进行分页

      3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ...

  7. Python 3 利用机器学习模型 进行手写体数字识别

    0.引言 介绍了如何生成数据,提取特征,利用sklearn的几种机器学习模型建模,进行手写体数字1-9识别. 用到的四种模型: 1. LR回归模型,Logistic Regression 2. SGD ...

  8. JAR包介绍大全用途作用详解JAVA

    jta.jar 标准JTA API必要commons-collections.jar 集合类 必要antlr.jar  ANother Tool for Language Recognition 必要 ...

  9. 数据库连接池(c3p0)

    (一)问题的提出: 在使用开发基于数据库的web程序时,传统的数据库使用模式按照以下步骤: 在程序中建立数据库连接 进行sql操作 断开数据库连接 但是,这种模式存在着移动的问题: 传统连接模式每次向 ...

  10. 配置shiro错误

    在web配置工程中配置shiro,如果启动Tomcat,报错:org.apache.shiro.web.config.WebIniSecurityManagerFactory.setDefaults ...