Given preorder and inorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

For example, given

preorder = [3,9,20,15,7]
inorder = [9,3,15,20,7]

Return the following binary tree:

    3
/ \
9 20
/ \
15 7

这道题要求用先序和中序遍历来建立二叉树,跟之前那道 Construct Binary Tree from Inorder and Postorder Traversal 原理基本相同,针对这道题,由于先序的顺序的第一个肯定是根,所以原二叉树的根节点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数,参见代码如下:

class Solution {
public:
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
return buildTree(preorder, , preorder.size() - , inorder, , inorder.size() - );
}
TreeNode *buildTree(vector<int> &preorder, int pLeft, int pRight, vector<int> &inorder, int iLeft, int iRight) {
if (pLeft > pRight || iLeft > iRight) return NULL;
int i = ;
for (i = iLeft; i <= iRight; ++i) {
if (preorder[pLeft] == inorder[i]) break;
}
TreeNode *cur = new TreeNode(preorder[pLeft]);
cur->left = buildTree(preorder, pLeft + , pLeft + i - iLeft, inorder, iLeft, i - );
cur->right = buildTree(preorder, pLeft + i - iLeft + , pRight, inorder, i + , iRight);
return cur;
}
};

下面来看一个例子, 某一二叉树的中序和后序遍历分别为:

Preorder:    5  4  11  8  13  9

Inorder:    11  4  5  13  8  9

  4  11  8  13  9      =>          5

11  4    13  8  9                /  \

  11        13  9      =>         5

11       13    9                  /  \

                             4   8

11       13    9        =>         5

11       13    9                    /  \

                             4   8

                            /    /     \

                           11    13    9

做完这道题后,大多人可能会有个疑问,怎么没有由先序和后序遍历建立二叉树呢,这是因为先序和后序遍历不能唯一的确定一个二叉树,比如下面五棵树:

1      preorder:    1  2  3
   / \       inorder:       2  1  3
 2    3       postorder:   2  3  1

1       preorder:     1  2  3
      /       inorder:       3  2  1
    2          postorder:   3  2  1
   /
 3

1        preorder:    1  2  3
      /        inorder:      2  3  1
    2       postorder:  3  2  1
      \
       3

1         preorder:    1  2  3
         \        inorder:      1  3  2
          2      postorder:  3  2  1
         /
       3

1         preorder:    1  2  3
         \      inorder:      1  2  3
          2      postorder:  3  2  1
            \
    3

从上面我们可以看出,对于先序遍历都为 1 2 3 的五棵二叉树,它们的中序遍历都不相同,而它们的后序遍历却有相同的,所以只有和中序遍历一起才能唯一的确定一棵二叉树。但可能会有小伙伴指出,那第 889 题 Construct Binary Tree from Preorder and Postorder Traversal 不就是从先序和后序重建二叉树么?难道博主被啪啪打脸了么?难道博主的一世英名就此毁于一旦了么?不,博主向命运的不公说不,请仔细看那道题的要求 "Return any binary tree that matches the given preorder and postorder traversals.",是让返回任意一棵二叉树即可,所以这跟博主的结论并不矛盾。长舒一口气,博主的晚节保住了~

Github 同步地址:

https://github.com/grandyang/leetcode/issues/105

类似题目:

Construct Binary Tree from Inorder and Postorder Traversal

Construct Binary Tree from Preorder and Postorder Traversal

参考资料:

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/discuss/34538/My-Accepted-Java-Solution

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/discuss/34562/Sharing-my-straightforward-recursive-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树的更多相关文章

  1. LeetCode OJ:Construct Binary Tree from Preorder and Inorder Traversal(从前序以及中序遍历结果中构造二叉树)

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  2. LeetCode: Construct Binary Tree from Preorder and Inorder Traversal 解题报告

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

  3. Leetcode Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  4. LeetCode——Construct Binary Tree from Preorder and Inorder Traversal

    Question Given preorder and inorder traversal of a tree, construct the binary tree. Note: You may as ...

  5. [leetcode]Construct Binary Tree from Preorder and Inorder Traversal @ Python

    原题地址:http://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/ 题意:根 ...

  6. Leetcode: Construct Binary Tree from Preorder and Inorder Traversal, Construct Binary Tree from Inorder and Postorder Traversal

    总结: 1. 第 36 行代码, 最好是按照 len 来遍历, 而不是下标 代码: 前序中序 #include <iostream> #include <vector> usi ...

  7. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  8. 【LeetCode】105. Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

  9. 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...

随机推荐

  1. SignalR系列续集[系列6:使用自己的连接ID]

    目录 SignalR系列目录 前言 老规矩,前言~,在此先道个歉,之前的1-5对很多细节问题都讲的不是很详细,也有很多人在QQ或者博客问我一些问题 所以,特开了这个续集.. - -, 讲一些大家在开发 ...

  2. 【移动端兼容问题研究】javascript事件机制详解(涉及移动兼容)

    前言 这篇博客有点长,如果你是高手请您读一读,能对其中的一些误点提出来,以免我误人子弟,并且帮助我提高 如果你是javascript菜鸟,建议您好好读一读,真的理解下来会有不一样的收获 在下才疏学浅, ...

  3. 在Winform界面菜单中实现动态增加【最近使用的文件】菜单项

    在我们一些和文件处理打交道的系统中,我们往往需要记录下最近使用的文件,这样方便用户快速打开之前浏览或者编辑过的文件,这种在很多软件上很常见,本文主要介绍在Winform界面菜单中实现[最近使用的文件] ...

  4. Git 相关总结

    Git 优秀在线教程 廖雪峰-史上最浅显易懂的Git教程!

  5. Delphi_08_Delphi_Object_Pascal_基本语法_06_函数参数

    发现Delphi中关于函数参数部分的内容还是比较多的,暂时说到这篇随笔为止吧,以后再继续讨论一下函数的参数部分的内容. 一 工程文件 program DefaultParameter; {$APPTY ...

  6. 以ZeroMQ谈消息中间件的设计【译文】

    本文主要是探究学习比较流行的一款消息层是如何设计与实现的 ØMQ是一种消息传递系统,或者乐意的话可以称它为"面向消息的中间件".它在金融服务,游戏开发,嵌入式系统,学术研究和航空航 ...

  7. 配置rsync服务,数据同步。

    这部分设计服务器端和客户端. [服务器端] 如果服务器没有安装rsync服务则使用yum安装rsync服务. yum install rsync 然后 vim /etc/xinetd.d/rsync ...

  8. 微信小程序注册

    小程序是一种新的开放能力,可以在微信内被便捷地获取和传播,同时具有出色的使用体验.开发者可以根据平台提供的能力,快速地开发一个小程序. 开放内容包括: 1.开放注册范围:企业.政府.媒体.其他组织: ...

  9. 如何用代码读取Office Online Server2016的文档的备注信息

    前言 在一个项目上客户要求读取office online server 2016的对文档的备注信息,如下图: 以前思路老纠结在OOS这个在线上,总有以为这个信息存储在某个列表中,其实错了,这个备注信息 ...

  10. linux定制

    http://cc.bingj.com/cache.aspx?q=OpenEmbedded+clfs&d=4706495287069596&mkt=zh-CN&setlang= ...