图像处理------颜色梯度变化 (Color Gradient)
有过UI设计经验的一定对2D图形渲染中的Color Gradient 或多或少有些接触,很多编程
语言也提供了Gradient的接口,但是想知道它是怎么实现的嘛?
本文介绍三种简单的颜色梯度变化算法,就可以很容易实现常见的梯度变化算法
三种都要求提供两个参数即起始颜色RGB值, 最终颜色RGB的值。
垂直梯度颜色变化,效果如下:

水平梯度颜色变化,效果如下:

水平与垂直两个方向叠加梯度变化效果如下:

算法代码及其解释
计算起始颜色和终点颜色RGB之间差值代码如下:
float rr = startColor[0] - endColor[0];
float gg = startColor[1] - endColor[1];
float bb = startColor[2] - endColor[2];
实现垂直梯度变化的代码如下:
r = endColor[0] + (int)(rr * ((float)row/255.0f) +0.5f);
g = endColor[1] + (int)(gg * ((float)row/255.0f) +0.5f);
b = endColor[2] + (int)(bb * ((float)row/255.0f) +0.5f);
实现水平梯度变化代码如下:
// set gradient color valuefor each pixel
r = endColor[0] + (int)(rr * ((float)col/255.0f) +0.5f);
g = endColor[1] + (int)(gg * ((float)col/255.0f) + 0.5f);
b = endColor[2] + (int)(bb * ((float)col/255.0f) +0.5f);
实现水平和垂直两个方向上Gradient叠加代码如下:
r = endColor[0] + (int)(rr * (((float)col * (float)row)/size) +0.5f);
g = endColor[1] + (int)(gg * (((float)col * (float)row)/size) +0.5f);
b = endColor[2] + (int)(bb * (((float)col * (float)row)/size) +0.5f);
程序对上面三种Gradient方法分别放在三个不同的方法中,根据参数调用。
程序的完全Java源代码如下:
- import java.awt.BorderLayout;
- import java.awt.Dimension;
- import java.awt.Graphics;
- import java.awt.Graphics2D;
- import java.awt.RenderingHints;
- import java.awt.image.BufferedImage;
- import javax.swing.JComponent;
- import javax.swing.JFrame;
- public class ColorGradientDemo extends JComponent {
- /**
- *
- */
- private static final long serialVersionUID = -4134440495899912869L;
- private BufferedImage image = null;
- protected void paintComponent(Graphics g) {
- Graphics2D g2 = (Graphics2D)g;
- g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
- g2.drawImage(getImage(4), 5, 5, image.getWidth(), image.getHeight(), null);
- }
- public BufferedImage getImage(int type) {
- if(image == null) {
- image = new BufferedImage(256, 256, BufferedImage.TYPE_INT_ARGB);
- int[] rgbData = new int[256*256];
- if(type == 1) {
- generateVGradientImage(rgbData);
- } else if(type == 2) {
- generateHGradientImage(rgbData);
- } else {
- generateHVGradientImage(rgbData);
- }
- setRGB(image, 0, 0, 256, 256, rgbData);
- }
- return image;
- }
- private void generateVGradientImage(int[] rgbData) {
- int[] startColor = getStartColor();
- int[] endColor = getEndColor();
- float rr = startColor[0] - endColor[0];
- float gg = startColor[1] - endColor[1];
- float bb = startColor[2] - endColor[2];
- int a=255;
- int r=0, g=0, b=0;
- int index = 0;
- for(int row=0; row<256; row++) {
- for(int col=0; col<256; col++) {
- // set random color value for each pixel
- // set gradient color value for each pixel
- r = endColor[0] + (int)(rr * ((float)row/255.0f) + 0.5f);
- g = endColor[1] + (int)(gg * ((float)row/255.0f) + 0.5f);
- b = endColor[2] + (int)(bb * ((float)row/255.0f) + 0.5f);
- rgbData[index] = ((a & 0xff) << 24) |
- ((r & 0xff) << 16) |
- ((g & 0xff) << 8) |
- ((b & 0xff));
- index++;
- }
- }
- }
- private void generateHGradientImage(int[] rgbData) {
- int[] startColor = getStartColor();
- int[] endColor = getEndColor();
- float rr = startColor[0] - endColor[0];
- float gg = startColor[1] - endColor[1];
- float bb = startColor[2] - endColor[2];
- int a=255;
- int r=0, g=0, b=0;
- int index = 0;
- for(int row=0; row<256; row++) {
- for(int col=0; col<256; col++) {
- // set gradient color value for each pixel
- r = endColor[0] + (int)(rr * ((float)col/255.0f) + 0.5f);
- g = endColor[1] + (int)(gg * ((float)col/255.0f) + 0.5f);
- b = endColor[2] + (int)(bb * ((float)col/255.0f) + 0.5f);
- rgbData[index] = ((a & 0xff) << 24) |
- ((r & 0xff) << 16) |
- ((g & 0xff) << 8) |
- ((b & 0xff));
- index++;
- }
- }
- }
- private void generateHVGradientImage(int[] rgbData) {
- int[] startColor = getStartColor();
- int[] endColor = getEndColor();
- float rr = startColor[0] - endColor[0];
- float gg = startColor[1] - endColor[1];
- float bb = startColor[2] - endColor[2];
- int a=255;
- int r=0, g=0, b=0;
- int index = 0;
- float size = (float)Math.pow(255.0d, 2.0);
- for(int row=0; row<256; row++) {
- for(int col=0; col<256; col++) {
- // set random color value for each pixel
- r = endColor[0] + (int)(rr * (((float)col * (float)row)/size) + 0.5f);
- g = endColor[1] + (int)(gg * (((float)col * (float)row)/size) + 0.5f);
- b = endColor[2] + (int)(bb * (((float)col * (float)row)/size) + 0.5f);
- rgbData[index] = ((a & 0xff) << 24) |
- ((r & 0xff) << 16) |
- ((g & 0xff) << 8) |
- ((b & 0xff));
- index++;
- }
- }
- }
- public int[] getStartColor() {
- return new int[]{246,53,138};
- }
- public int[] getEndColor() {
- return new int[]{0,255,255};
- }
- public void setRGB( BufferedImage image, int x, int y, int width, int height, int[] pixels ) {
- int type = image.getType();
- if ( type == BufferedImage.TYPE_INT_ARGB || type == BufferedImage.TYPE_INT_RGB )
- image.getRaster().setDataElements( x, y, width, height, pixels );
- else
- image.setRGB( x, y, width, height, pixels, 0, width );
- }
- public static void main(String[] args) {
- JFrame frame = new JFrame("Gradient Color Panel");
- frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
- frame.getContentPane().setLayout(new BorderLayout());
- // Display the window.
- frame.getContentPane().add(new ColorGradientDemo(), BorderLayout.CENTER);
- frame.setPreferredSize(new Dimension(280,305));
- frame.pack();
- frame.setVisible(true);
- }
- }
图像处理------颜色梯度变化 (Color Gradient)的更多相关文章
- 梯度下降(Gradient Descent)小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
- 梯度下降(Gradient Descent)
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
- [机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课 ...
- Delphi图像处理 -- 颜色矩阵变换
转载自阿发伯:http://blog.csdn.net/maozefa/article/details/8316430 阅读提示: <Delphi图像处理>系列以效率为侧重点,一般 ...
- 16个基本颜色关键字 Basic color keywords
16个基本颜色关键字 Basic color keywords Color Color Name HEX RGB black #000000 0,0,0 silver #C0C0C0 192, ...
- 自然梯度(Natural Gradient)
自然梯度(Natural Gradient)
- 机器学习算法的调试---梯度检验(Gradient Checking)
梯度检验是一种对求导结果进行数值检验的方法,该方法可以验证求导代码是否正确. 1. 数学原理 考虑我们想要最小化以 θ 为自变量的目标函数 J(θ)(θ 可以为标量和可以为矢量,在 Numpy 的 ...
- 梯度下降(Gradient Descent)相关概念
梯度,直观理解: 梯度: 运算的对像是纯量,运算出来的结果会是向量在一个标量场中, 梯度的计算结果会是"在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过 ...
- One-hot 编码/TF-IDF 值来提取特征,LAD/梯度下降法(Gradient Descent),Sigmoid
1. 多值无序类数据的特征提取: 多值无序类问题(One-hot 编码)把“耐克”编码为[0,1,0],其中“1”代表了“耐克”的中 间位置,而且是唯一标识.同理我们可以把“中国”标识为[1,0],把 ...
随机推荐
- Spring源码情操陶冶-DefaultBeanDefinitionDocumentReader#parseBeanDefinitions
前言-阅读源码有利于陶冶情操,本文承接前文Spring源码情操陶冶-AbstractApplicationContext#obtainFreshBeanFactory 前文提到最关键的地方是解析bea ...
- Base-64编码介绍
Base-64编码保证了二进制数据的安全 Base-64编码可以将任意一组字节转换为较长的常见文本字符序列,从而可以合法地作为首部字段值.Base-64编码将用户输入或二进制数据,打包成一种安全格式, ...
- Python基础篇(五)
bool用于判断布尔值的结果是True还是False >>> bool("a") True >>> bool(3) True >>& ...
- BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]
4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...
- Vue中结合Flask与Node.JS的异步加载功能实现文章的分页效果
你好!欢迎阅读我的博文,你可以跳转到我的个人博客网站,会有更好的排版效果和功能. 此外,本篇博文为本人Pushy原创,如需转载请注明出处:http://blog.pushy.site/posts/15 ...
- C语言之prinf的用法
1. n换行字符 1).直接输出内容 printf("哈哈\n"); 2).带参数的输出 int i = 10 ; %d:输入控制符 printf ("%d\n" ...
- 将你的Python Web程序部署到Ubuntu服务器上
在本文记录了我在Ubuntu中部署Flask Web站点的过程, 其中包括用户创建.代码获取.Python3环境的安装.虚拟环境设置.uWSGI启动程序设置,并将Nginx作为前端反向代理.希望对各位 ...
- 使用tcp+select实现客户端与客户端的通信
使用多路复用实现客户端与客户端进行通信: 原理:客户端只要一连上服务器,立马给服务器发送用户名,然后在服务端将newsocketfd存放在同一个结构体中,客户端先给服务器发送数据,然后通过服务器转发给 ...
- eclipse CDT unresolved inclusion
原因:c\c++库未设置所导致的 解决办法:1.先配置环境变量:打开window->preference->c\c++bulid->environment->add-> ...
- STL源码剖析之序列式容器
最近由于找工作需要,准备深入学习一下STL源码,我看的是侯捷所著的<STL源码剖析>.之所以看这本书主要是由于我过去曾经接触过一些台湾人,我一直觉得台湾人非常不错(这里不涉及任何政治,仅限 ...