题目大意

  给你 \(n\),求

\[\sum_{a=1}^n\sum_{b=1}^n\sum_{c=1}^n[\frac{1}{a}+\frac{1}{b}=\frac{1}{c}][\gcd(a,b,c)=1]\\
\]

  \(n\leq {10}^{12}\)

题解

\[\begin{align}
&\sum_{a=1}^n\sum_{b=1}^n\sum_{c=1}^n[\frac{1}{a}+\frac{1}{b}=\frac{1}{c}][\gcd(a,b,c)=1]\\
=&\sum_{a=1}^n\sum_{b=1}^n\sum_{c=1}^n[c(a+b)=ab][\gcd(a,b,c)=1]\\
=&\sum_{a=1}^n\sum_{b=1}^n[(a+b)\mid ab][\gcd(a,b,c)=1]\\
\end{align}
\]

  通过打表可以发现,一对数 \(a,b(a\leq b)\) 满足条件的充要条件是 \(b\leq n\) 且 \(\frac{a}{\gcd(a,b)}+\frac{b}{\gcd(a,b)}=\gcd(a,b)\)

  证明:

  若 \(\gcd(a,b)=1\),则 \(\gcd(a+b,ab)=1\)

  记 \(g=\gcd(a,b),a=ga',b=gb'\),则

\[a+b=g(a'+b')\\
ab=g^2a'b'\\
\frac{ab}{a+b}=\frac{g^2a'b'}{g(a'+b')}=\frac{ga'b'}{a'+b'}\\
\]

  所以 \((a'+b')\mid g\)

  若 \(a'+b'\neq g\),则 \(\gcd(a,b,c)=\frac{g}{a'+b'}\),所以 \(a'+b'=g\) 所以 \(a=a'(a'+b'),b=b'(a'+b'),c=a'b'\)

解法一

  记 \(x=a',y=b'\)

\[\begin{align}
ans&=\sum_{x=1}^n\sum_{y=x}^n[xy+y^2\leq n]\gcd(x,y)=1\\
&=\sum_{d=1}^\sqrt{n}\mu(d)\sum_{x=1}\sum_{y=x}[xy+y^2\leq \frac{n}{d^2}]\\
&=\sum_{d=1}^\sqrt{n}\mu(d)\sum_{y=1}\min\left(\left\lfloor\frac{\left\lfloor\frac{n}{d^2}\right\rfloor-y^2}{y}\right\rfloor,y\right)
\end{align}
\]

  时间复杂度:\(O(\sqrt n\log n)\)

解法二

  \(a+b=g^2\)

  枚举 \(g\),那么 \(\gcd(g,a')=1\)

  当 \(g\) 比较小的时候 \((1\leq g\leq \sqrt n)\),\(a'\) 有 \(\varphi(g)\) 种取值,可以直接筛

  当 \(g\) 比较大的时候 \((\sqrt n<g<\sqrt{2n})\),

\[\sum_{i=1}^\frac{n}{g}[\gcd(g,i)=1]\\
=\sum_{d\mid g}\mu(d)\lfloor\frac{n}{gd}\rfloor
\]

  可以暴力枚举因子。

  时间复杂度:\(O(\sqrt n\log n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<vector>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int check(int x,int y)
{
return x*y%(x+y)==0;
}
const int N=1000010;
int b[N];
int pri[N];
int miu[N];
int cnt;
int main()
{
// open("loj6482");
ll n;
scanf("%lld",&n);
miu[1]=1;
for(int i=2;i<=1000000;i++)
{
if(!b[i])
{
pri[++cnt]=i;
miu[i]=-1;
}
for(int j=1;j<=cnt&&i*pri[j]<=1000000;j++)
{
b[i*pri[j]]=1;
if(i%pri[j]==0)
break;
miu[i*pri[j]]=-miu[i];
}
}
ll ans=0;
for(int i=1;(ll)i*i<=n;i++)
if(miu[i])
{
ll s=0;
for(int j=1;;j++)
{
int z=min((n/i/i-(ll)j*j)/j,(ll)j);
if(z<=0)
break;
s+=z;
}
ans+=miu[i]*s;
}
ans=ans*2-1;
printf("%lld\n",ans);
// int ans=0;
// for(int i=1;i<=n;i++)
// for(int j=1;j<=n;j++)
// if(gcd(i,j)==1&&i*(i+j)<=n&&j*(i+j)<=n)
// ans++;
// printf("%d\n",ans);
// return 0;
// int n=1000;
// for(int i=1;i<=n;i++)
// for(int j=i;j<=n;j++)
// if(gcd(i,j)==1&&check(i*(i+j),j*(i+j))&&gcd(gcd(i*(i+j),j*(i+j)),i*j)==1)
// if(j*(i+j)<=n)
// printf("%d %d %d\n",i*(i+j),j*(i+j),i*j);
// return 0;
// for(int i=1;i<=n;i++)
// for(int j=i;j<=n;j++)
// if(i*j%(i+j)==0)
// {
// int z=i*j/(i+j);
// if(gcd(gcd(i,j),z)==1)
// printf("%d %d %d %d %d %d\n",i,j,z,gcd(i,j),i/gcd(i,j),j/gcd(i,j));
// }
// return 0;
}

【LOJ6482】LJJ 爱数数 数论的更多相关文章

  1. 「LOJ6482」LJJ爱数数

    「LOJ6482」LJJ爱数数 解题思路 : 打表发现两个数 \(a, b\) 合法的充要条件是(我不管,我就是打表过的): \[ a + b = \text{gcd}(a, b)^2 \] 设 \( ...

  2. P4844 LJJ爱数数 数论

    思路: 化简后得到(a+b)c=ab,设g=(a,b),A=a/g,B=b/g,则g(A+B)c=ABg^2,即(A+B)c=ABg 由题目已知条件:(a,b,c)=1,即(g,c)=1,g|(A+B ...

  3. P4844 LJJ爱数数

    题目 P4844 LJJ爱数数 本想找到莫比乌斯反演水题练练,结果直接用了两个多小时才做完 做法 \(\sum\limits_{a=1}^n\sum\limits_{b=1}^n\sum\limits ...

  4. LJJ爱数数

    LJJ爱数数 求\(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\epsilon(gcd(i,j,k))(\frac{1}{i}+\frac{1}{j}==\frac{1} ...

  5. 卡特兰数 Catalan数 ( ACM 数论 组合 )

    卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ...

  6. [BJOI2019]勘破神机(斯特林数,数论)

    [BJOI2019]勘破神机(斯特林数,数论) 题面 洛谷 题解 先考虑\(m=2\)的情况. 显然方案数就是\(f_i=f_{i-1}+f_{i-2}\),即斐波那契数,虽然这里求出来是斐波那契的第 ...

  7. [HZOI 2016]我们爱数数

    [HZOI 2016]我们爱数数 题目大意: 一张圆桌,每个位置按顺时针从\(1\)到\(n\)编号.有\(n\)个人,编号从\(1\)到\(n\).如果编号为\(i\)的人坐到了编号为\(i\)的位 ...

  8. COJ 0036 数数happy有多少个?

    数数happy有多少个? 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 图图是个爱动脑子.观察能力很强的好学生.近期他正学英语 ...

  9. 【BZOJ】【3530】【SDOI2014】数数

    AC自动机/数位DP orz zyf 好题啊= =同时加深了我对AC自动机(这个应该可以叫Trie图了吧……出边补全!)和数位DP的理解……不过不能自己写出来还真是弱…… /************* ...

  10. BZOJ3530: [Sdoi2014]数数

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 322  Solved: 188[Submit][Status] ...

随机推荐

  1. CentOS6.8 安装node.js npm

    环境:CentOS6.8_X64系统 一.到官方下载最新的编译好的安装文件,目前是6.9.4. $>cd /usr/local/src #定位到这个目录,下载的文件会在这个目录#使用wget下载 ...

  2. 用于ViEmu的重置为试用状态的Python脚本

    import winreg import shutil shutil.rmtree("C:\\Users\\Administrator\\AppData\\Local\\Identities ...

  3. WPF 自定义 ImageButton

    控件源码: public class ImageButton : Button    {        public ImageButton() {        } public string No ...

  4. 关于elementui表单数字校验踩坑记

    需求:1.输入类型是数字.2.数字大小有限制.3.非必填 做法: <el-form-item label="熟悉程度" prop="averageCaseRunTi ...

  5. C#图片添加文字水印

    /// <summary> /// 给图片添加文字水印 /// </summary> /// <param name="img">图片</ ...

  6. git stash解决代码merge出错

    最近在使用git提交代码时,遇到一个问题,就是我修改了几个文件的代码,然后又想把自己代码库里面的代码更新到最新版本,然后不出所料,代码冲突了!作为一个喜欢解决问题的程序员,怎么会被这样的问题所困住呢? ...

  7. asp.net FromBody接收不到参数的解决方法

    今天改一个前端框架(angularjs,不兼容ie内核,需要修改),后台框架是已经写好了的,不用修改. 接口接收参数如下: [HttpPost] public async Task<Schedu ...

  8. Fix: Unable to terminate process ‘Access is denied’ 杀进程,关服务

    https://appuals.com/fix-unable-to-terminate-process-access-is-denied/ 我 Process Hacker (方法3),成功杀掉: 阿 ...

  9. extjs 中比较常见且好用的监听事件

    ComboBox listeners:{ expand:function(){ //此函数是,点击下拉框展开的时候事件 }, select:function(com, record, index){ ...

  10. Synchronized的基本知识、实现原理以及其与ReentrantLock的区别

    一.synchronized知识 在谈论synchronized之前,我们需要了解线程安全问题的主要诱因.线程安全问题的主要诱因如下: 存在共享数据(也称为临界资源) 存在多条线程共同操作这些共享数据 ...