组合数问题(zyys版)
【问题描述】
定义"组合数"S(n,m)代表将 n 个不同的元素拆分成 m 个非空集合的方案
数.举个栗子,将{1,2,3}拆分成 2 个集合有({1},{2,3}),({2},{1,3}),({3},{1,2})三种拆分
方法.
小猫想知道,如果给定 n,m 和 k,对于所有的 0<=i<=n,0<=j<=min(i,m),有多少对
(i,j),满足 S(i,j)是 k 的倍数.
注意,0 也是 k 的倍数,S(0,0)=1,对于 i>=1,S(i,0)=0.
【输入格式】
从 problem.in 种读入数据
第一行有两个整数 t,k,t 代表该测试点总共有多少组测试数据.
接下来 t 行,每行两个整数 n,m.
【输出格式】
输出到文件 problem.out 中
t 行,每行一个整数代表所有的 0<=i<=n,0<=j<=min(i,m),有多少对(i,j),满足 S(i,j)
是 k 的倍数.
【样例输入 1】
12
33
【样例输出 1】
3
【样例说明 1】
S(1,0),S(2,0),S(3,0)均是 2 的倍数
【样例输入 2】
25
45
67
【样例输出 2】
4
12
【数据规模与约定】
对于 20%的数据,满足 n,m<=7,k<=5
对于 60%的数据,满足 n,m<=100,k<=10
对于每个子任务,都有 50%的数据满足 t=1
对于 100%的数据,满足 1<=n<=2000,1<=m<=2000,2<=k<=21,1<=t<=10000
斯特林数(II)
S[i][j]=S[i-1][j-1]+j*S[i-1][j]
解释一下:
对于i,j,它可以单独构成j集合,前面要有j-1个集合
也可以放入前面的集合
因为集合非空,所以前面的集合要有j个,有j种选择
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int k,t,n,m;
long long S[][],a[][];
int main()
{int i,j;
cin>>t>>k;
S[][]=;
for (i=;i<=;i++)
{
S[i][]=;
for (j=;j<=i;j++)
{
S[i][j]=(S[i-][j-]+S[i-][j]*j)%k;
}
}
for (i=;i<=;i++)
{
for (j=;j<=i;j++)
{
if (S[i][j]==)
a[i][j]=;
}
}
for (i=;i<=;i++)
{
for (j=;j<=;j++)
a[i][j]+=a[i][j-];
}
for (i=;i<=;i++)
{
for (j=;j<=;j++)
a[i][j]+=a[i-][j];
}
while (t--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",a[n][m]);
}
}
组合数问题(zyys版)的更多相关文章
- AcWing 214. Devu和鲜花 (容斥)打卡
Devu有N个盒子,第i个盒子中有AiAi枝花. 同一个盒子内的花颜色相同,不同盒子内的花颜色不同. Devu要从这些盒子中选出M枝花组成一束,求共有多少种方案. 若两束花每种颜色的花的数量都相同,则 ...
- [Leetcode 39]组合数的和Combination Sum
[题目] Given a set of candidate numbers (candidates) (without duplicates) and a target number (target) ...
- xdoj-1106(判断组合数是否溢出)
1 首先 ans=c(n,a[0] )*c(n-a[0],a[1])*(n-a[0]-a[1],a[2])...... a[i]: 含义 在数列中i的个数有a[i]个 2 如何判断 x*y>p( ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- 浙大版《C语言程序设计(第3版)》题目集 --总结
浙大版<C语言程序设计(第3版)>题目集 此篇博客意义为总结pta上浙大版<C语言程序设计(第3版)>题目集所做题目的错误点,心得体会. 1.练习2-10 计算分段函数[1] ...
- 读书笔记:JavaScript DOM 编程艺术(第二版)
读完还是能学到很多的基础知识,这里记录下,方便回顾与及时查阅. 内容也有自己的一些补充. JavaScript DOM 编程艺术(第二版) 1.JavaScript简史 JavaScript由Nets ...
- jQuery实践-网页版2048小游戏
▓▓▓▓▓▓ 大致介绍 看了一个实现网页版2048小游戏的视频,觉得能做出自己以前喜欢玩的小游戏很有意思便自己动手试了试,真正的验证了这句话-不要以为你以为的就是你以为的,看视频时觉得看懂了,会写了, ...
- 一起学微软Power BI系列-使用技巧(4)Power BI中国版企业环境搭建和帐号问题
千呼万唤的Power BI中国版终于落地了,相信12月初的微软技术大会之后已经铺天盖地的新闻出现了,不错,Power BI中国版真的来了,但还有些遗憾,国际版的一些重量级服务如power bi emb ...
- 将表里的数据批量生成INSERT语句的存储过程 增强版
将表里的数据批量生成INSERT语句的存储过程 增强版 有时候,我们需要将某个表里的数据全部或者根据查询条件导出来,迁移到另一个相同结构的库中 目前SQL Server里面是没有相关的工具根据查询条件 ...
随机推荐
- 关于如何学习C语言
2016级计算机专业的C语言分为两个学期,第一学期是C语言(基础),第二学期是C语言(高级),在第一学期主要学习的内容是基本的数据类型,分支结构和循环结构,一维和二维数组,字符数组,函数.通过这学期独 ...
- io多路复用(三)
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket sk1 = socket.socket() sk1.bind(('127.0.0. ...
- 如何用tomcat实现类似weblogic那样的热部署方式
平时weblogic部署程序包时一般是到控制台去部署,不需要重启. 相反之前用tomcat部署应用时,我一般都是把tomcat重启来完成程序包的更新或新包部署.但是这次要部署的应用有点多,大概10几个 ...
- aix 6.1系统怎么安装?这里有详细图文教程
今年六月,我们公司出现了一次非常严重的数据丢失的事故.生产服务器崩溃导致所有的业务都陷于停滞,而且由于涉及到公司机密又无法贸然到数据恢复公司进行恢复,可是自己又无法解决.权衡利弊还是决定找一家有保密资 ...
- python 面向对象设计思想发展史
这篇主要说的是程序设计思想发展历史,分为概述和详细发展历史 一,概述 1940年以前:面向机器 最早的程序设计都是采用机器语言来编写的,直接使用二进制码来表示机器能够识别和执行的 指令和数 据.简单来 ...
- day-6 机器学习概念及应用
学习玩Python基础语法,今天开始进行机器学习,首先了解下机器学习和深度学习的一些基本概念和术语: 1. 机器学习概念及应用 2. 深度学习概念及应用 3. 机器学习基本术语及举例 4. 机 ...
- Linux环境下发布.net core
一.安装Linux环境 1. 安装VM虚拟机和操作系统 VM虚拟工具安装的过程详见:http://blog.csdn.net/stpeace/article/details/78598333.直接按照 ...
- 07_Python的控制判断循环语句1(if判断,for循环...)_Python编程之路
Python的数据类型在前几节我们都简单的一一介绍了,接下来我们就要讲到Python的控制判断循环语句 在现实编程中,我们往往要利用计算机帮我们做大量重复计算的工作,在这样的情况下,需要机器能对某个条 ...
- linux系统命令学习系列-例行任务管理at命令
先来复习一下上节内容: 切换用户身份命令su 以root身份执行操作命令sudo 作业:给user1配置sudo权限,不用密码,可执行useradd命令 在/etc/sudoers文件中添加如下配置项 ...
- 解决IE下a标签点击有虚线边框的问题
解决IE下a标签点击有虚线边框的问题 关键词:IE去除虚线边框.IE解决a标签虚线问题 先看看IE下,a标签出现的虚线边框问题: (上面中,红线包裹的就是一个翻页的按钮,按钮实际是hml的a标签做的, ...