题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4008
题解:

概率dp,神仙题
如果我们可以求出每种牌被取到的概率f,那么最后期望造成的伤害也就很好计算了。
定义dp[i][j]表示有j轮游戏在1~i中的某张牌处就结束的概率。
那么此时我们考虑dp[i][j]会怎样对f[i+1]造成贡献:
只剩下了R-j轮游戏进行到了第i+1张牌,怎么计算这种情况下第i+1张牌发动技能的概率g呢?
(令p为其发动技能的概率,并给这R-j轮游戏重新依次编号为1,2,……,R-j)
显然有:g=p+(1-p)*p+(1-p)^2*p+p……+(1-p)^(R-j-1)*p
上式表示重新编号后的在第1轮发动技能的概率+在第2轮发动技能的概率+……+在第R-j轮发动技能的概率。
然而不需要这么麻烦的计算,因为上面的g=1-(1-p)^(R-j),(自己YY为什么是对的吧)
然后把对f[i+1]进行贡献:f[i+1]+=dp[i][j]*g

接下来考虑如何转移dp[i][j]:
1.这R-j轮可以进行到第i+1张牌的机会都没有让其发动技能:
dp[i+1][j]+=dp[i][j]*(1-p)^(R-j)
2.这R-j轮可以进行到第i+1张牌的机会让其发动了一次技能:
dp[i+1][j+1]+=dp[i][j]*(1-(1-p)^(R-j))

然后就是不断转移dp的同时去求出f[]数组。

(真的是神仙题,题解都看了好久,好像第一次遇到这种定义了一个莫名其妙的dp状态去辅助求出另外一个东西从而得出答案的题。。。)

代码:

#include<bits/stdc++.h>
using namespace std;
double dp[250][150],p[250],f[250],ans;
int d[250];
int N,R,Case;
double fastpow(double a,int b){
double ret=1;
for(;b;a=a*a,b>>=1)
if(b&1) ret*=a;
return ret;
}
int main(){
for(scanf("%d",&Case);Case;Case--){
scanf("%d%d",&N,&R);
for(int i=1;i<=N;i++) scanf("%lf%d",&p[i],&d[i]),f[i]=0;
for(int i=0;i<=N;i++) for(int j=0;j<=R;j++) dp[i][j]=0;
dp[0][0]=1; ans=0;
for(int i=0;i<N;i++)
for(int j=0;j<=R;j++){
double k=fastpow(1-p[i+1],R-j);
dp[i+1][j]+=dp[i][j]*k;
if(j+1<=R){
dp[i+1][j+1]+=dp[i][j]*(1-k);
f[i+1]+=dp[i][j]*(1-k);
}
}
for(int i=1;i<=N;i++) ans+=f[i]*d[i];
printf("%.10lf\n",ans);
}
return 0;
}

  

●BZOJ 4008 [HNOI2015]亚瑟王的更多相关文章

  1. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  2. bzoj 4008: [HNOI2015]亚瑟王

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...

  3. BZOJ 4008: [HNOI2015]亚瑟王 [DP 概率 !!!]

    传送门 题意: $r$轮$n$张卡牌,每一轮依次考虑每张卡牌,$p_i$概率发动造成$d_i$伤害后结束本轮或者继续考虑下一张 每张卡牌发动过之后以后都会跳过 求$r$轮之后的期望伤害 看了一节课出题 ...

  4. 4008: [HNOI2015]亚瑟王

    4008: [HNOI2015]亚瑟王 链接 分析: 根据期望的线性性,直接求出每张牌出现的概率,最后乘以攻击力就是答案. 每张牌出现的概率只与它前面的牌有关,与后面的没有关系,于是按顺序考虑每张牌. ...

  5. 【BZOJ】4008: [HNOI2015]亚瑟王

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 这题主要在于:先算概率,再算期望! 一轮一轮的计算似乎很复杂,每一轮它其实是可以看作 ...

  6. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  7. 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)

    [BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...

  8. 【BZOJ4008】[HNOI2015]亚瑟王

    [BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...

  9. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

随机推荐

  1. 听翁恺老师mooc笔记(8)--字符串2

    字符串的赋值 字符串的输入与输出 对C语言的基础类型,比如int.double等类型,scanf.printf有专门的格式转换,而对字符串,scanf.printf使用%s格式字符进行输入与输出.当使 ...

  2. 201621123043 《Java程序设计》第6周学习总结

    1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰,内容覆盖面向对象的 ...

  3. python3.* socket例子

    On Server: # -*- coding: utf-8 -*-#this is the server import socketif "__main__" == __name ...

  4. 清华集训2015 V

    #164. [清华集训2015]V http://uoj.ac/problem/164 统计 描述 提交 自定义测试 Picks博士观察完金星凌日后,设计了一个复杂的电阻器.为了简化题目,题目中的常数 ...

  5. css中的position

    一.position语法与结构 position语法: position : static absolute relative position参数:static : 无特殊定位,对象遵循HTML定位 ...

  6. python小练习之二

    title: python小练习之二 tags: 新建,模板,小书匠 grammar_cjkRuby: true --- python小练习之二 需求:实现用户登录,用户名和密码保存到文件里,连续输入 ...

  7. 在WebStorm中启动Angular项目

    点击配置 创建 选择命令 package.json 运行 查看运行结果

  8. Angular组件——父组件调用子组件方法

    viewChild装饰器. 父组件的模版和控制器里调用子组件的API. 1.创建一个子组件child1里面只有一个greeting方法供父组件调用. import { Component, OnIni ...

  9. 【52ABP实战教程】00-- ASP.NET CORE系列介绍

    为什么是.net core? 记得在半年前.NET CORE刚刚出了1.0,当时有朋友推荐我使用的时候,个人觉得还不成熟. 现在.NET Core已经到了2.0,.NET Standard 2.0 添 ...

  10. Android开发——发布第三方库到JitPack上

    前言: 看到大神们的写的第三方控件,比较好用,我们使用的时候直接是在gradle上加上代码就可以使用了,现在到我们写了一个第三方控件,想要别人使用的时候也是直接在gradle加上相关的代码就可以用了, ...