论文阅读笔记(五)【CVPR2012】:Large Scale Metric Learning from Equivalence Constraints
由于在读文献期间多次遇见KISSME,都引自这篇CVPR,所以详细学习一下.
Introduction
度量学习在机器学习领域有很大作用,其中一类是马氏度量学习(Mahalanobis metric learning). 什么是马氏距离?参考该篇文章【传送门】
KISS含义为:keep it simple and straightforward
Learning a Mahalanobis Metric
对于两个数据点 xi、xj,基于马氏距离的相似度为:

如果两个数据属于同一类,记为 yij = 1,否则 yij = 0.
(1)Large Margin Nearest Neighbor Metric(LMNN):
大间隔最近邻居(LMNN)对应的参考文献有人做了阅读梳理【传送门】
目标:使得 k 个最近邻样本总是属于同一类别,且不同类别样本之间的距离很大.
代价函数:
其中: 
理解:上式第一项用于惩罚与输入样本距离过大的目标邻居,第二项用于惩罚与输入样本类别不同且距离过小的样本,即侵入样本(至少保持1个单位的距离).
通过最小化代价函数从而求解 M.
梯度下降:
其中:
(2)Information Theoretic Metric Learning(ITML):
目标:在距离函数约束下最小化两个多元高斯之间的微分相对熵的问题.(没理解)
通过使用Bregman projection的凸优化方法,求解 M.
(凸优化基础为0,没看明白)
不断更新该式子获得 M: 
(3)Linear Discriminant Metric Learning(LDML):
目标:对于一对图片,判断是否是同一个对象
概率模型:
最大化的目标函数:
通过梯度下降来求解 M:
(4)上述三种方法特点:
① 都需要进行迭代,计算成本高;
② 相似的pairs在 C 的方向上得到优化,不相似的pairs在 C 的反方向上得到优化.
KISS Metric Learning
H1:假设同一类,H0:假设非同一类,似然比为:

似然比较高意味着不是同一类(H0接受),似然比较低意味着是同一类(H0拒绝).
定义
,变形过程如下:


其中:

去除常数项(常数项只提供偏移offset):

由:
得:
论文阅读笔记(五)【CVPR2012】:Large Scale Metric Learning from Equivalence Constraints的更多相关文章
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...
- 论文阅读笔记五十六:(ExtremeNet)Bottom-up Object Detection by Grouping Extreme and Center Points(CVPR2019)
论文原址:https://arxiv.org/abs/1901.08043 github: https://github.com/xingyizhou/ExtremeNet 摘要 本文利用一个关键点检 ...
- 论文阅读笔记五十九:Res2Net: A New Multi-scale Backbone Architecture(CVPR2019)
论文原址:https://arxiv.org/abs/1904.01169 摘要 视觉任务中多尺寸的特征表示十分重要,作为backbone的CNN的对尺寸表征能力越强,性能提升越大.目前,大多数多尺寸 ...
- 论文阅读笔记五十八:FoveaBox: Beyond Anchor-based Object Detector(CVPR2019)
论文原址:https://arxiv.org/abs/1904.03797 摘要 FoveaBox属于anchor-free的目标检测网络,FoveaBox直接学习可能存在的图片种可能存在的目标,这期 ...
- 论文阅读笔记五十七:FCOS: Fully Convolutional One-Stage Object Detection(CVPR2019)
论文原址:https://arxiv.org/abs/1904.01355 github: tinyurl.com/FCOSv1 摘要 本文提出了一个基于全卷积的单阶段检测网络,类似于语义分割,针对每 ...
- 论文阅读笔记五十五:DenseBox: Unifying Landmark Localization with End to End Object Detection(CVPR2015)
论文原址:https://arxiv.org/abs/1509.04874 github:https://github.com/CaptainEven/DenseBox 摘要 本文先提出了一个问题:如 ...
- 论文阅读笔记五十四:Gradient Harmonized Single-stage Detector(CVPR2019)
论文原址:https://arxiv.org/pdf/1811.05181.pdf github:https://github.com/libuyu/GHM_Detection 摘要 尽管单阶段的检测 ...
- 论文阅读笔记五十三:Libra R-CNN: Towards Balanced Learning for Object Detection(CVPR2019)
论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构 ...
- 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)
论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...
随机推荐
- Python3标准库:weakref对象的非永久引用
1. weakref对象的非永久引用 weakref模块支持对象的弱引用.正常的引用会增加对象的引用数,并避免它被垃圾回收.但结果并不总是如期望中的那样,比如有时可能会出现一个循环引用,或者有时需要内 ...
- yum 程序包管理简介
rpm可以实现程序的快速,简单安装(跟编译安装比),但是rpm自己不能解决依赖,所以很多工具为了自动解决依赖应运而生,其中yum就是其中之一. yum解决依赖的办法: 必须有个文件服务器,里面放置所以 ...
- MFC/QT 学习笔记(二)——MFC入门
MFC以C++形式封装了Windows API //实践 编写MFC需要的头文件#include <afxwin.h> 程序执行流程: 实例化应用程序对象(有且只有一个) 执行程序入口函数 ...
- .NET CORE(C#) WPF 抽屉式菜单
微信公众号:Dotnet9,网站:Dotnet9,问题或建议:请网站留言, 如果对您有所帮助:欢迎赞赏. .NET CORE(C#) WPF 抽屉式菜单 阅读导航 本文背景 代码实现 本文参考 源码 ...
- Java连载88-HashSet集合与hashCode方法重写
一.Set集合 1.HashSet底层实际上是一个HashMap,HashMap底层采用了哈希表数据结构. 2.哈希表又称为散列表,哈希表底层是一个数组,这个数组中每一个元素是一个单向链表,每个单向链 ...
- 安装 mysqlclient 报 mysql_config not found
安装 mysqlclient 报 mysql_config not found raise EnvironmentError("%s not found" % (mysql_con ...
- if、counf、countif、countifs、sumif、sumifs
评分等级:=IF(C3>=90,"优秀",IF(C3>=80,"良好",IF(C3>=60,"及格","不及格& ...
- axios上传图片遇见问题
博客后台,vue-quill-editor 编辑器,上传图片,使用sm.ms图床,上传逻辑需要自定义,element-ui,el-upload,自定义http-request上传图片, 'conten ...
- sqlserver数据库重启
停止:net stop mssqlserver 重启:net start mssqlserver
- hibernate报错:MappingException: Could not determine type for...解决办法
有时候实体里的一些属性并不想映射到数据库(比方说子级菜单List), 如果不做处理的话会报字段映射错误找不到这列Column Not Found 例如:org.hibernate.MappingExc ...