动态规划最短路径LintcodeNO110
动态规划最短路径LintcodeNO110
简单的dp题,没啥好说的...
class Solution {
public:
/**
* @param grid: a list of lists of integers
* @return: An integer, minimizes the sum of all numbers along its path
*/
int minPathSum(vector<vector<int>> &grid) {
// write your code here
const int DP_N = 1000;
const int DP_M = 1000;
int n = grid.size();
int m = grid[0].size();
int i,j;
int dp[DP_N][DP_M];
memset(dp,0,DP_N * DP_M);
//初始化dp数组的值
dp[0][0] = grid[0][0];
for(int t=1;t<n;t++)
{
dp[t][0] = dp[t-1][0] + grid[t][0];
}
for(int k=1;k<m;k++)
{
dp[0][k] = dp[0][k-1] + grid[0][k];
}
//开始dp
for(i=1;i<n;i++)
{
for(j=1;j<m;j++)
{
dp[i][j] = grid[i][j] + min(dp[i-1][j],dp[i][j-1]);
}
}
return dp[i-1][j-1];
}
};
在本地调试代码的时候遇到 int dp[DP_N][DP_M]; 行列都大于1000时分配失败的问题.
解决,本地调试调小一点,Submit时再调回来就好了
注意一下边界问题,还有记得初始化dp数组.
动态规划最短路径LintcodeNO110的更多相关文章
- Java动态规划实现最短路径问题
问题描述 给定一个加权连通图(无向的或有向的),要求找出从每个定点到其他所有定点之间的最短路径以及最短路径的长度. 2.1 动态规划法原理简介 动态规划算法通常用于求解具有某种最优性质的问题.在这类问 ...
- [MIT6.006] 19. Daynamic Programming I: Fibonacci, Shortest Path 动态规划I:斐波那契,最短路径
这节课讲动态规划的内容,动态规划是一种通用且有效的算法设计思路,它的主要成分是"子问题"+"重用".它可以用于斐波那契和最短路径等问题的求解上. 一.斐波那契 ...
- Minimum Path Sum,最短路径问题,动态规划
问题描述:Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right ...
- 递归,动态规划,找最短路径,Help Jimmy
题目链接:http://poj.org/problem?id=1661 解题报告: 1.老鼠每次来到一块木板上都只有两条路可以走,可以使用递归 #include <stdio.h> #in ...
- 动态规划之最短路径(Floyd算法)
package main import ( "fmt" ) func floyd(m [][]int) { length := len(m[]) var min, i, j int ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
- Bellman-Ford 单源最短路径算法
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 最短路径——Floyd-Warshall算法
Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3). 我们平时所见的Floyd算法的一般形式如下: void Floyd() { int i, ...
随机推荐
- Codeforces Round #577 (Div 2)
A. Important Exam 水题 #include<iostream> #include<string.h> #include<algorithm> #in ...
- 2012-4-2 通过MdiParent设置窗体最前
SentenceForm form = new SentenceForm(); form.MdiParent = this; form.Show(); //form.MdiParent = this; ...
- tensorflow入门——3解决问题——4让我们开始吧
深度学习适合解决海量数据和复杂问题 在机器学习中,语音识别,图像识别,语意识别用的是不同的技术,从事相关工作的人合作几乎不可能. 深度学习改变了这一切. 80年代计算机很慢,数据集很小,因此深度学习没 ...
- 微软产品开发文档:包括.net core .net vs等等
Browse all https://docs.microsoft.com/en-us/learn/browse/?roles=developer&products=xamarin%2Cef- ...
- RegExp类型
一.创建正则表达式的方法 1.字面量形式 var expressiion=/pattern/flags; flags:g全局模式,即将被应用于所有字符串,而非在发现第一个匹配项时立即停止: i不区分大 ...
- [转载] iptables 防火墙设置
http://hongwei.im/iptables-setting-for-ubuntu-1304/ Iptables是一个防火墙,所有的Ubuntu官方发行版(Ubuntu,Kubuntu,Xub ...
- Scrapy项目注意事项
- 【codeforces 789B】Masha and geometric depression
[题目链接]:http://codeforces.com/contest/789/problem/B [题意] 让你一个一个地写出等比数列的每一项 (注意是一个一个地写出); 有m个数字不能写; 且数 ...
- Python--day38--事件
1,事件的方法: #set和clear #分别用来修改一个事件的状态 True或者False#is_set用来查看一个事件的状态#wait 是依据事件的状态来决定自己是否阻塞# False最 True ...
- H3C Network命令详解