Largest Submatrix
给出一个\(n\times m\)的网格,网格里只放有字符a,b,c,d,w,x,,z,现在你可以将其中的w换成a,b,把x换成b,c,把y换成a,c,把z换成a,b,c,询问换完以后最大的子矩阵大小,使其包含一样的字符,\(1 ≤ m, n ≤ 1000\)。
解
注意到字符很少,我们可以钦定最大的子矩阵的字符,也就是尽量把字符变成变成所钦定,正确性显然。
于是接下来问题就变成了如何快速找到这个矩阵了,接下来简要提一下做法,如果初学者看不懂可以看一下这道题目Largest Rectangle in a Histogram,注意到这个类似与最大相同子矩阵的模型,我们只要按行枚举,再枚举列,暴力预处理每一列在以该行为起点上向上所能最长的连续所钦定的字符,预处理出这个问题转化为有m个宽度为1矩形,第i个矩形高度为\(h_i\),从左至右下端对齐x轴,求其中最大的子矩形。
对于这个问题,按照枚举的思想,先枚举第几个矩形i,以这个矩形为高向左右延伸能最大的矩形,也就是碰到第一个矩形高度小于i的位置,这是单调性问题,考虑单调队列维护,维护一个矩形高度单调递增的单调队列。
于是队列中保存两个值,一个是该矩形向左最远能延伸位置,一个是该矩形的高度,将要入队元素如果能满足单调性,则不予考虑,否则弹出队尾,而队尾元素未被弹出必然是从队尾所对应的位置到当前要入队的位置高度都要比队尾高度大,这也是单调队列的性质,这样队尾所对应矩形最远延伸位置即已经保存下来的最左边位置和入队元素对应位置的上一个,而至于新入队的矩形所对应的最左延升位置即队尾的最左延伸位置,依次维护下去就可以了。
时间复杂度不难得知\(O(nm)\)。
参考代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define Size 1500
using namespace std;
char A[Size][Size];
bool B[Size][Size];
int n,m,T[Size],R,h[Size],l[Size],ans;
il void work();
template<class free>
il free Max(free,free);
int main(){
while(scanf("%d%d",&n,&m)!=EOF){ans=0;
for(int i(1);i<=n;++i)
scanf("%s",A[i]+1);
for(int i(1),j;i<=n;++i)
for(j=1;j<=m;++j)
if(A[i][j]=='a'||A[i][j]=='w'||A[i][j]=='y'||A[i][j]=='z')B[i][j]|=true;
work(),memset(B,0,sizeof(B));
for(int i(1),j;i<=n;++i)
for(j=1;j<=m;++j)
if(A[i][j]=='b'||A[i][j]=='w'||A[i][j]=='x'||A[i][j]=='z')B[i][j]|=true;
work(),memset(B,0,sizeof(B));
for(int i(1),j;i<=n;++i)
for(j=1;j<=m;++j)
if(A[i][j]=='c'||A[i][j]=='x'||A[i][j]=='y'||A[i][j]=='z')B[i][j]|=true;
work(),memset(B,0,sizeof(B)),printf("%d\n",ans);
}
return 0;
}
il void work(){
for(int i(1),j;i<=n;++i){
for(j=1;j<=m;++j){
h[j]=0,l[j]=j;while(B[i+h[j]][j])++h[j];
while(0<R&&h[T[R]]>h[j])
ans=Max((j-l[T[R]])*h[T[R]],ans),l[j]=l[T[R]],--R;
T[++R]=j;
}while(0<R)ans=Max((j-l[T[R]])*h[T[R]],ans),--R;
}
}
template<class free>
il free Max(free a,free b){
return a>b?a:b;
}
Largest Submatrix的更多相关文章
- Largest Submatrix(动态规划)
Largest Submatrix Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- POJ-3494 Largest Submatrix of All 1’s (单调栈)
Largest Submatrix of All 1’s Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 8551 Ac ...
- hdu 2870 Largest Submatrix(平面直方图的最大面积 变形)
Problem Description Now here is a matrix with letter 'a','b','c','w','x','y','z' and you can change ...
- Largest Submatrix of All 1’s
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is the largest? By largest we m ...
- codeforces 407D Largest Submatrix 3
codeforces 407D Largest Submatrix 3 题意 找出最大子矩阵,须满足矩阵内的元素互不相等. 题解 官方做法 http://codeforces.com/blog/ent ...
- Largest Submatrix of All 1’s(思维+单调栈)
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1's which is the largest? By largest we m ...
- POJ 3494 Largest Submatrix of All 1’s 单调队列||单调栈
POJ 3494 Largest Submatrix of All 1’s Description Given a m-by-n (0,1)-matrix, of all its submatrice ...
- POJ - 3494 Largest Submatrix of All 1’s 单调栈求最大子矩阵
Largest Submatrix of All 1’s Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is ...
- HDU 2870 Largest Submatrix (单调栈)
http://acm.hdu.edu.cn/showproblem.php? pid=2870 Largest Submatrix Time Limit: 2000/1000 MS (Java/Oth ...
- MINSUB - Largest Submatrix
MINSUB - Largest Submatrix no tags You are given an matrix M (consisting of nonnegative integers) a ...
随机推荐
- Linux初学习之 rm 命令
现在我们来仔细的学习一下linux的rm命令,这个命令顾名思义(我猜的,嘻嘻,是remove) 命令格式: rm [OPTION]... FILE... Remove (unlink) the FIL ...
- GCloud SDK 遇到的错误记录
eclipse 环境 1.调用 SetAppInfo 方法返回 -1 语音id 和 key 设置正确 ,各种检测都没问题 解决办法 把安卓工程目录下 obj 文件价删除 ,把sdk 替换成以前能用的老 ...
- CKEditor与CKFinder学习--自定义界面及按钮事件捕获
原文地址:CKEditor与CKFinder学习--自定义界面及按钮事件捕获 讨厌CSDN的广告,吃香太难看! 效果图 界面操作图 原始界面 调整后的界面(删除了flush,表单元素等) 该界面的皮 ...
- Ubuntu 常用软件记录【持续更新】
主机之间通信 Shell 管理器: asbru-cm 文件传输工具: filezilla 虚拟化 Virtual box
- 标准 IO fread 与 fwrite 的使用(可以实现二进制流的读写)
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream); size_t fwrite(const void ...
- mysql的sql筛选排重最大值并修改其属性
修改属性 mysql -h192.168.1.51 -uroot -e "use codex_game_s1051_h; update user_info set isActive=0 wh ...
- boost asio acceptor 构造
boost::asio::io_service io_svc; boost::asio::ip::address_v4 lis_ip; // 默认监听本机所有IP boost::asio::ip::t ...
- 10.Struts2值栈
1.什么是值栈 * 值栈就相当于Struts2框架的数据的中转站,向值栈存入一些数据.从值栈中获取到数据. * ValueStack 是 struts2 提供一个接口,实现类 OgnlValueSta ...
- vue之vue-router嵌套路由
1.定义路由 routes: [ { path: '/product', //第一层路由 name: 'product', component: Vproductcontent,//父组件渲染的是子组 ...
- Redmine 和GitBlit仓库服务器整合
运行环境: RedMine: 4.0.4 Git 仓库: Gitbilt V1.8.0 必须: Redmine 安装并可运行 Redmine运行的主机里面已经安装了 Git,因需要在命令行中运行 gi ...