2020省选模拟训练1 排列(perm)多项式exp+EGF
这道题真的还是简单的一批.....
我当时要是参加考试的话该多好(凭这一道题就能进前 5 了)
十分显然的指数型生成函数.
令 $f[i]$ 表示有 $i$ 个点的答案.
然后显然有 $f[i]=\sum_{j=1}^{i}\binom{i}{j} \times \frac{j!}{j} \times f[i-j]$
然后这个就是一个 EGF 的形式.
令 $A(x)$ 表示只有一个环的时候的生成函数.
然后有 $ans[i]=[x^i] \sum_{i} \frac{A^i(x)}{i!}$
故 $ans[i]=[x^i] e^{A(x)}$
code:
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <string>
#define ll long long
#define ull unsigned long long
using namespace std;
namespace IO
{
char buf[100000],*p1,*p2;
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd()
{
int x=0; char s=nc();
while(s<'0') s=nc();
while(s>='0') x=(((x<<2)+x)<<1)+s-'0',s=nc();
return x;
}
void print(int x) {if(x>=10) print(x/10);putchar(x%10+'0');}
void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
const int G=7;
const int N=400005;
const int mod=950009857;
int A[N],B[N],w[2][N],mem[N*100],*ptr=mem,tmpa[N],tmpb[N],aa[N],bb[N];
inline int qpow(int x,int y)
{
int tmp=1;
for(;y;y>>=1,x=(ll)x*x%mod) if(y&1) tmp=(ll)tmp*x%mod;
return tmp;
}
inline int INV(int a) { return qpow(a,mod-2); }
inline void ntt_init(int len)
{
int i,j,k,mid,x,y;
w[1][0]=w[0][0]=1,x=qpow(G,(mod-1)/len),y=qpow(x,mod-2);
for (i=1;i<len;++i) w[0][i]=(ll)w[0][i-1]*x%mod,w[1][i]=(ll)w[1][i-1]*y%mod;
}
void NTT(int *a,int len,int flag)
{
int i,j,k,mid,x,y;
for(i=k=0;i<len;++i)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(mid=1;mid<len;mid<<=1)
for(i=0;i<len;i+=mid<<1)
for(j=0;j<mid;++j)
{
x=a[i+j], y=(ll)w[flag==-1][len/(mid<<1)*j]*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod;
a[i+j+mid]=(x-y+mod)%mod;
}
if(flag==-1)
{
int rev=INV(len);
for(i=0;i<len;++i) a[i]=(ll)a[i]*rev%mod;
}
}
inline void getinv(int *a,int *b,int len,int la)
{
if(len==1) { b[0]=INV(a[0]); return; }
getinv(a,b,len>>1,la);
int l=len<<1,i;
memset(A,0,l*sizeof(A[0]));
memset(B,0,l*sizeof(A[0]));
memcpy(A,a,min(la,len)*sizeof(a[0]));
memcpy(B,b,len*sizeof(b[0]));
ntt_init(l);
NTT(A,l,1),NTT(B,l,1);
for(i=0;i<l;++i) A[i]=((ll)2-(ll)A[i]*B[i]%mod+mod)*B[i]%mod;
NTT(A,l,-1);
memcpy(b,A,len<<2);
}
void get_dao(int *a,int *b,int len)
{
for(int i=1;i<len;++i) b[i-1]=(ll)i*a[i]%mod;
b[len-1]=0;
}
void get_jifen(int *a,int *b,int len)
{
for(int i=1;i<len;++i) b[i]=(ll)INV(i)*a[i-1]%mod;
b[0]=0;
}
void get_ln(int *a,int *b,int len,int la)
{
int l=len<<1,i;
memset(tmpa,0,l<<2);
memset(tmpb,0,l<<2);
get_dao(a,tmpa,min(len,la));
getinv(a,tmpb,len,la);
ntt_init(l);
NTT(tmpa,l,1),NTT(tmpb,l,1);
for(i=0;i<l;++i) tmpa[i]=(ll)tmpa[i]*tmpb[i]%mod;
NTT(tmpa,l,-1);
get_jifen(tmpa,b,len);
}
void get_exp(int *a,int *b,int len,int la)
{
if(len==1) { b[0]=1; return; }
int l=len<<1,i;
get_exp(a,b,len>>1,la);
for(i=0;i<l;++i) aa[i]=bb[i]=0;
for(i=0;i<(len>>1);++i) aa[i]=b[i];
get_ln(b,bb,len,len>>1);
for(i=0;i<len;++i) bb[i]=(ll)(mod-bb[i]+(i>=la?0:a[i]))%mod;
bb[0]=(bb[0]+1)%mod;
ntt_init(l);
NTT(aa,l,1),NTT(bb,l,1);
for(i=0;i<l;++i) aa[i]=(ll)aa[i]*bb[i]%mod;
NTT(aa,l,-1);
for(i=0;i<len;++i) b[i]=aa[i];
}
struct poly
{
int len,*a;
poly(){}
poly(int l) {len=l,a=ptr,ptr+=l; }
inline void rev() { reverse(a,a+len); }
inline void fix(int l) {len=l,a=ptr,ptr+=l;}
inline void get_mod(int l) { for(int i=l;i<len;++i) a[i]=0; len=l; }
inline poly dao()
{
poly re(len-1);
for(int i=1;i<len;++i) re.a[i-1]=(ll)i*a[i]%mod;
return re;
}
inline poly jifen()
{
poly c;
c.fix(len+1);
c.a[0]=0;
for(int i=1;i<=len;++i) c.a[i]=(ll)a[i-1]*INV(i)%mod;
return c;
}
inline poly Inv(int l)
{
int lim=1;
while(lim<=l) lim<<=1;
poly b(lim);
getinv(a,b.a,lim,len);
b.get_mod(l);
return b;
}
inline poly ln(int l)
{
int lim=1;
while(lim<=l) lim<<=1;
poly b(lim);
get_ln(a,b.a,lim,len);
return b;
}
inline poly exp(int l)
{
int lim=1;
while(lim<=l) lim<<=1;
poly b(lim);
get_exp(a,b.a,lim,len);
return b;
}
inline poly q_pow(int k,int l)
{
int lim=1;
while(lim<=l) lim<<=1;
poly b(lim),c(lim);
get_ln(a,b.a,lim,len);
for(int i=0;i<b.len;++i) b.a[i]=(ll)b.a[i]*k%mod;
get_exp(b.a,c.a,lim,b.len);
c.get_mod(l);
return c;
}
inline poly operator*(const poly &b) const
{
poly c(len+b.len-1);
if(c.len<=500)
{
for(int i=0;i<len;++i)
if(a[i]) for(int j=0;j<b.len;++j) c.a[i+j]=(c.a[i+j]+(ll)(a[i])*b.a[j])%mod;
return c;
}
int n=1;
while(n<(len+b.len)) n<<=1;
memset(A,0,n<<2);
memset(B,0,n<<2);
memcpy(A,a,len<<2);
memcpy(B,b.a,b.len<<2);
ntt_init(n);
NTT(A,n,1), NTT(B,n,1);
for(int i=0;i<n;++i) A[i]=(ll)A[i]*B[i]%mod;
NTT(A,n,-1);
memcpy(c.a,A,c.len<<2);
return c;
}
poly operator+(const poly &b) const
{
poly c(max(len,b.len));
for(int i=0;i<c.len;++i) c.a[i]=((i<len?a[i]:0)+(i<b.len?b.a[i]:0))%mod;
return c;
}
poly operator-(const poly &b) const
{
poly c(len);
for(int i=0;i<len;++i)
{
if(i>=b.len) c.a[i]=a[i];
else c.a[i]=(a[i]-b.a[i]+mod)%mod;
}
return c;
}
poly operator/(poly u)
{
int n=len,m=u.len,l=1;
while(l<(n-m+1)) l<<=1;
rev(),u.rev();
poly v=u.Inv(l);
v.get_mod(n-m+1);
poly re=(*this)*v;
rev(),u.rev();
re.get_mod(n-m+1);
re.rev();
return re;
}
poly operator%(poly u)
{
poly re=(*this)-u*(*this/u);
re.get_mod(u.len-1);
return re;
}
};
#define MAX 400003
int fac[N],in[N],g[N],bu[N];
void init()
{
int i,j;
fac[0]=in[0]=1;
for(i=1;i<MAX;++i) fac[i]=(ll)i*fac[i-1]%mod,in[i]=INV(i);
}
int main()
{
// IO::setIO("input");
int i,j,n,k;
init();
scanf("%d%d",&n,&k);
for(i=1;i<=k;++i)
{
int x;
scanf("%d",&x),bu[x]=1;
}
poly A(n+1);
for(i=0;i<=n;++i) if(bu[i]) A.a[i]=in[i];else A.a[i]=0;
poly re=A.exp(n+1);
for(i=1;i<=n;++i) printf("%d\n",(ll)fac[i]*re.a[i]%mod);
return 0;
}
2020省选模拟训练1 排列(perm)多项式exp+EGF的更多相关文章
- BZOJ 1072: [SCOI2007]排列perm 状态压缩DP
1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...
- SCOI2007排列perm
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 805 Solved: 497[Submit][Stat ...
- BZOJ 1072 [SCOI2007]排列perm
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1268 Solved: 782[Submit][Sta ...
- 【BZOJ】【1072】【SCOI2007】排列perm
暴力 ……傻逼题我还WA了这么多次(有几次是忘了删调试信息……sigh) 直接统计0~9各有多少个,枚举数字就行了……因为是直接枚举的数字,而不是枚举用了s中的哪一位,所以是不用去重的!(我一开始写的 ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- [BZOJ1072][SCOI2007]排列perm 状压dp
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2488 Solved: 1546[Submit][St ...
- bzoj1072【SCOI2007】排列perm
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1479 Solved: 928 [id=1072&q ...
- 【WC2019】数树 树形DP 多项式exp
题目大意 有两棵 \(n\) 个点的树 \(T_1\) 和 \(T_2\). 你要给每个点一个权值吗,要求每个点的权值为 \([1,y]\) 内的整数. 对于一条同时出现在两棵树上的边,这条边的两个端 ...
- 【NOI2019模拟2019.6.27】B (生成函数+整数划分dp|多项式exp)
Description: \(1<=n,k<=1e5,mod~1e9+7\) 题解: 考虑最经典的排列dp,每次插入第\(i\)大的数,那么可以增加的逆序对个数是\(0-i-1\). 不难 ...
随机推荐
- Go语言实现:【剑指offer】二叉树中和为某一值的路径
该题目来源于牛客网<剑指offer>专题. 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路 ...
- GDAL利用地理坐标读取图像像元值
最近的一个项目需要在电子海图中下载已知水深点,导出点的地理坐标(经纬度).然后在arcgis中打开这些地理坐标输出为shp,利用GDAL读取不同波段的点对应的像元值,从而构建水深和像元值的对应关系. ...
- java8 Stream API笔记
生成Stream Source的方式 从Collection和数组生成 * Collection.stream() * Collection.parallelStream() * Arrays.str ...
- vue的组件传值
1.父组件向子组件传值 父组件: 123456789101112 <template> <child :name="name"></child> ...
- FastDFS 配置文件 storage.conf
FastDFS 版本5.05 配置文件分为三部分 控制器:tracker.conf存储器:storage.conf 客户端:client.conf 文件位置:/etc/fdfsstorage.co ...
- 一键安装php5.6.40脚本(LAMP环境)
#!/bin/bash #安装依赖软件 yum -y install libxml2-devel curl-devel libjpeg libjpeg-devel libpng libpng-deve ...
- [WPF 自定义控件]在MenuItem上使用RadioButton
1. 需求 上图这种包含多选(CheckBox)和单选(RadioButton)的菜单十分常见,可是在WPF中只提供了多选的MenuItem.顺便一提,要使MenuItem可以多选,只需要将MenuI ...
- 在Windows系统中安装Redis和php_redis扩展
安装Redis (1)下载redis压缩包,git下载地址https://github.com/MSOpenTech/redis/releases 解压文件夹,在文件夹中运行cmd命令: 输入: ...
- mysql出现 Unknown column 'Password' in 'field list'
linux安装了mysql之后初始化密码获取:出现了下面的内容,密码很尴尬,无法用root登录: grep 'temporary password' /var/log/mysqld.log [Note ...
- JS实现斐波那契数列的几种方法
斐波那契数列指的是这样一个数列:1.1.2.3.5.8.13.21.34.…… 前两项为1,从第三项起,每一项等于前两项的和,即F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n& ...