单源最短路径问题2 (Dijkstra算法)
用邻接矩阵
/*
单源最短路径问题2 (Dijkstra算法)
样例:
5 7
0 1 3
0 3 7
1 2 4
1 3 2
2 3 5
2 4 6
3 4 4
输出:
[0, 3, 7, 5, 9]
*/ import java.util.Arrays;
import java.util.Scanner; public class Main {
//图的顶点数,总边数
static int V, E;
//存储所有的边,大小为顶点数
static int[][] Edges;
static int[] d;
static boolean[] visited;
static final int MAX_VALUE = 999999; public static void main(String[] args) {
creatGraph();
shortPath(1);
System.out.println(Arrays.toString(d));
} static void shortPath(int start) {
d = new int[V];
visited = new boolean[V];
Arrays.fill(d, MAX_VALUE);
d[start] = 0;
while (true) {
int min_index = -1;
for (int j = 0; j < V; j++) {
if (!visited[j] && (min_index == -1 || d[j] < d[min_index])) {
min_index = j;
}
}
if (min_index == -1) break;
visited[min_index] = true;
for (int u = 0; u < V; u++) {
d[u] = Math.min(d[u], d[min_index] + Edges[min_index][u]);
}
}
} static void creatGraph() {
Scanner sc = new Scanner(System.in);
V = sc.nextInt();
E = sc.nextInt();
Edges = new int[V][V];
for (int[] i : Edges)
Arrays.fill(i, MAX_VALUE);
for (int i = 0; i < E; i++) {
int u = sc.nextInt();
int v = sc.nextInt();
int w = sc.nextInt();
Edges[u][v] = w;
Edges[v][u] = w;
}
}
}
用邻接表
/*
单源最短路径问题2 (Dijkstra算法)
样例:
5 7
0 1 3
0 3 7
1 2 4
1 3 2
2 3 5
2 4 6
3 4 4
输出:
[0, 3, 7, 5, 9]
*/ import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner; public class Main {
//图的顶点数,总边数
static int V, E;
//存储所有的边,大小为顶点数
static ArrayList<Edge>[] Edges;
static int[] d;
static boolean[] visited;
static final int MAX_VALUE = 999999; public static void main(String[] args) {
creatGraph();
shortPath(1);
System.out.println(Arrays.toString(d));
} static void shortPath(int start) {
d = new int[V];
visited = new boolean[V];
Arrays.fill(d, MAX_VALUE);
d[start] = 0;
while (true) {
int min_index = -1;
for (int j = 0; j < V; j++) {
if (!visited[j] && (min_index == -1 || d[j] < d[min_index])) {
min_index = j;
}
}
if (min_index == -1) break;
visited[min_index] = true;
for (Edge i : Edges[min_index]) {
d[i.to] = Math.min(d[i.to], d[min_index] + i.cost);
}
}
} static void creatGraph() {
Scanner sc = new Scanner(System.in);
V = sc.nextInt();
E = sc.nextInt();
Edges = new ArrayList[V];
for (int i = 0; i < V; i++)
Edges[i] = new ArrayList();
for (int i = 0; i < E; i++) {
int u = sc.nextInt();
int v = sc.nextInt();
int w = sc.nextInt();
Edges[u].add(new Edge(v, w));
Edges[v].add(new Edge(u, w));
}
}
} class Edge {
int to;
int cost; public Edge(int to, int cost) {
this.to = to;
this.cost = cost;
}
}
单源最短路径问题2 (Dijkstra算法)的更多相关文章
- 图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径 ...
- 单源最短路径问题之dijkstra算法
欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 算法的原理 以源点开始,以源点相连的顶点作为向外延伸的顶点,在所有这些向外延伸的顶 ...
- 单源最短路径—Bellman-Ford和Dijkstra算法
Bellman-Ford算法:通过对边进行松弛操作来渐近地降低从源结点s到每个结点v的最短路径的估计值v.d,直到该估计值与实际的最短路径权重相同时为止.该算法主要是基于下面的定理: 设G=(V,E) ...
- 单源最短路径问题1 (Bellman-Ford算法)
/*单源最短路径问题1 (Bellman-Ford算法)样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9] */ ...
- 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...
- 单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)
Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之 ...
- 单源最短路径 Bellman_ford 和 dijkstra
首先两个算法都是常用于 求单源最短路径 关键部分就在于松弛操作 实际上就是dp的感觉 if (dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist ...
- PAT甲级——1111 Online Map (单源最短路经的Dijkstra算法、priority_queue的使用)
本文章同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90041078 1111 Online Map (30 分) ...
- 单源最短路:Dijkstra算法 及 关于负权的讨论
描述: 对于图(有向无向都适用),求某一点到其他任一点的最短路径(不能有负权边). 操作: 1. 初始化: 一个节点大小的数组dist[n] 源点的距离初始化为0,与源点直接相连的初始化为其权重,其他 ...
随机推荐
- 前端学习(二十一)初识h5(笔记)
html5 主要目标:语义化!可以被人或者机器更好的阅读! 支持各种媒体的嵌入!不兼容低版本!------------ html5新标签: 普通: <header clas ...
- python输入问题
1.关于python的输入问题: 在2.x版本单行单输入input,单行多输入raw_input 在3.x版本中就已经没有raw_input,只有input,单行单输入多输入都可以. 类似2 3 4的 ...
- weex初始化启动webpack.common.conf.js中的...报语法错误
使用Babel转码 // 最新转码规则 $ npm install --save-dev-g babel-preset-env // react转码规则 $ npm install --save-de ...
- luoguP3690 【模板】Link Cut Tree (动态树)[LCT]
题目背景 动态树 题目描述 给定N个点以及每个点的权值,要你处理接下来的M个操作.操作有4种.操作从0到3编号.点从1到N编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor ...
- NX二次开发-NXOpen::Drawings::DrawingSheet Class Reference
NX11+VS2013 #include <NXOpen/Section.hxx> #include <NXOpen/SectionCollection.hxx> #inclu ...
- php开发面试题---1、php常用面试题一(PHP有哪些特性)
php开发面试题---1.php常用面试题一(PHP有哪些特性) 一.总结 一句话总结: ①.混合语法:php独特混合了C,Java,Prel以及PHP自创的语法. ②.为动态网页而生:可以比CGI或 ...
- hexo next主题深度优化(一),加入pjax功能。
文章目录 背景: 进入正题 pjax初体验--instantclick 真正的pjax 第一步 第二步 第三步 第四步 专门基于hexo next主题的pjax(将丢失的js效果重现) 将下面讲到的提 ...
- 剑指offer第二版面试题4:替换空格(JAVA版)
题目:请实现一个函数,把字符串中的每个空格替换成“%20”.例如输入“We are happy”,则输出”We%20are%20happy”. 原因:在网络编程中,如果URL参数中含有特殊字符,如:空 ...
- Kali Linux 2018 更新源配置
查看添加更新源 编辑sources.list,将kali更新源加入其中 sudo vim /etc/apt/sources.list 国内更新源 #阿里云 deb http://mirrors.ali ...
- Python CookBook(self report)
Python CookBook 中文版:https://python3-cookbook.readthedocs.io/zh_CN/latest/copyright.html 英文版:https:// ...