用邻接矩阵

/*
单源最短路径问题2 (Dijkstra算法)
样例:
5 7
0 1 3
0 3 7
1 2 4
1 3 2
2 3 5
2 4 6
3 4 4
输出:
[0, 3, 7, 5, 9]
*/ import java.util.Arrays;
import java.util.Scanner; public class Main {
//图的顶点数,总边数
static int V, E;
//存储所有的边,大小为顶点数
static int[][] Edges;
static int[] d;
static boolean[] visited;
static final int MAX_VALUE = 999999; public static void main(String[] args) {
creatGraph();
shortPath(1);
System.out.println(Arrays.toString(d));
} static void shortPath(int start) {
d = new int[V];
visited = new boolean[V];
Arrays.fill(d, MAX_VALUE);
d[start] = 0;
while (true) {
int min_index = -1;
for (int j = 0; j < V; j++) {
if (!visited[j] && (min_index == -1 || d[j] < d[min_index])) {
min_index = j;
}
}
if (min_index == -1) break;
visited[min_index] = true;
for (int u = 0; u < V; u++) {
d[u] = Math.min(d[u], d[min_index] + Edges[min_index][u]);
}
}
} static void creatGraph() {
Scanner sc = new Scanner(System.in);
V = sc.nextInt();
E = sc.nextInt();
Edges = new int[V][V];
for (int[] i : Edges)
Arrays.fill(i, MAX_VALUE);
for (int i = 0; i < E; i++) {
int u = sc.nextInt();
int v = sc.nextInt();
int w = sc.nextInt();
Edges[u][v] = w;
Edges[v][u] = w;
}
}
}

用邻接表

/*
单源最短路径问题2 (Dijkstra算法)
样例:
5 7
0 1 3
0 3 7
1 2 4
1 3 2
2 3 5
2 4 6
3 4 4
输出:
[0, 3, 7, 5, 9]
*/ import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner; public class Main {
//图的顶点数,总边数
static int V, E;
//存储所有的边,大小为顶点数
static ArrayList<Edge>[] Edges;
static int[] d;
static boolean[] visited;
static final int MAX_VALUE = 999999; public static void main(String[] args) {
creatGraph();
shortPath(1);
System.out.println(Arrays.toString(d));
} static void shortPath(int start) {
d = new int[V];
visited = new boolean[V];
Arrays.fill(d, MAX_VALUE);
d[start] = 0;
while (true) {
int min_index = -1;
for (int j = 0; j < V; j++) {
if (!visited[j] && (min_index == -1 || d[j] < d[min_index])) {
min_index = j;
}
}
if (min_index == -1) break;
visited[min_index] = true;
for (Edge i : Edges[min_index]) {
d[i.to] = Math.min(d[i.to], d[min_index] + i.cost);
}
}
} static void creatGraph() {
Scanner sc = new Scanner(System.in);
V = sc.nextInt();
E = sc.nextInt();
Edges = new ArrayList[V];
for (int i = 0; i < V; i++)
Edges[i] = new ArrayList();
for (int i = 0; i < E; i++) {
int u = sc.nextInt();
int v = sc.nextInt();
int w = sc.nextInt();
Edges[u].add(new Edge(v, w));
Edges[v].add(new Edge(u, w));
}
}
} class Edge {
int to;
int cost; public Edge(int to, int cost) {
this.to = to;
this.cost = cost;
}
}

单源最短路径问题2 (Dijkstra算法)的更多相关文章

  1. 图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法

    Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径 ...

  2. 单源最短路径问题之dijkstra算法

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 算法的原理 以源点开始,以源点相连的顶点作为向外延伸的顶点,在所有这些向外延伸的顶 ...

  3. 单源最短路径—Bellman-Ford和Dijkstra算法

    Bellman-Ford算法:通过对边进行松弛操作来渐近地降低从源结点s到每个结点v的最短路径的估计值v.d,直到该估计值与实际的最短路径权重相同时为止.该算法主要是基于下面的定理: 设G=(V,E) ...

  4. 单源最短路径问题1 (Bellman-Ford算法)

    /*单源最短路径问题1 (Bellman-Ford算法)样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9] */ ...

  5. 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)

    文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...

  6. 单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)

    Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之 ...

  7. 单源最短路径 Bellman_ford 和 dijkstra

    首先两个算法都是常用于 求单源最短路径 关键部分就在于松弛操作 实际上就是dp的感觉 if (dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist ...

  8. PAT甲级——1111 Online Map (单源最短路经的Dijkstra算法、priority_queue的使用)

    本文章同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90041078   1111 Online Map (30 分) ...

  9. 单源最短路:Dijkstra算法 及 关于负权的讨论

    描述: 对于图(有向无向都适用),求某一点到其他任一点的最短路径(不能有负权边). 操作: 1. 初始化: 一个节点大小的数组dist[n] 源点的距离初始化为0,与源点直接相连的初始化为其权重,其他 ...

随机推荐

  1. 记录ajax前后交互

    前台请求 $.ajax({ url : '/turn', type : "post", data : { "userName":userName, " ...

  2. mysql导入.csv文件出错

    1.报错信息 ERROR 1290 (HY000): The MySQL server is running with the --secure-file-priv option so it cann ...

  3. secureCRT 如何上传下载文件

    首先连接相应服务器,然后在文件选项当中,打开SFTP功能,这个时候会生成一个新的标签栏. 下载: cd 到要下载文件的路径下 lcd 要存放文件的本地路径 get  {filename} 例: cd  ...

  4. ES6(阮一峰) 数组的扩展

    1.扩展运算符 扩展运算符(spread)是三个点(...).它好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列. console.log(1, ...[2, 3, 4], 5) // ...

  5. flutter 使用keyboard_actions 关闭ios键盘

    项目中登录 输入账号密码 弹出的键盘 关闭不了,从而 引来一些问题, 1,第一次关闭 项目是在 最外层包裹一层,点击的时候进行关闭, return Scaffold( resizeToAvoidBot ...

  6. php中如何实现多进程

    php中如何实现多进程 一.总结 一句话总结: php多进程需要pcntl,posix扩展支持 可以通过 php - m 查看,没安装的话需要重新编译php,加上参数--enable-pcntl,po ...

  7. spring boot开发,jar包一个一个来启动太麻烦了,写一个bat文件一键启动

    spring boot开发,jar包一个一个来启动太麻烦了,写一个bat文件一键启动 @echo offcd D:\workProject\bushustart cmd /c "title ...

  8. 校验文件是否是同一个文件,以及mac中使用MD5命令

    背景 sz了war包,因为查看不到里面的内容,并不确定是否是同一个文件. 解决 通过MD5校验 md5sum xxxx 但是在mac中是没有这个命令的下载半天没下载下来,下面是快捷操作. 1.打开终端 ...

  9. 1.6 flux介绍

    这一节将介绍 React 的核心应用架构模式 Flux,包括内容: Flux 介绍 MVC 架构之痛 Flux 的理解 Flux 相关库和工具介绍 Flux 与 React 实例 最后我们将会把之前的 ...

  10. 6、通过Appium Desktop 实现录制功能

    1.老规矩,我们进入下面这个界面 图中红色标记1为 “top by coordinates”  按钮, 这是一种通过坐标定位元素的方式. 图中红色标记2为 “Start Recording”  按钮, ...